Chapitre 3 - Loi de probabilités.

1. Loi de Bernoulli

Soit A un événement d'un univers Ω .

1. Loi de Bernoulli

Soit A un événement d'un univers Ω .

Soit X la variable aléatoire :

1. Loi de Bernoulli

Soit A un événement d'un univers Ω .

Soit X la variable aléatoire :

$$\begin{array}{cccc} X\colon & \Omega & \longrightarrow & \{0\,;\,1\} \\ & & & \\ \omega & \longmapsto & \begin{cases} 1 & \text{si } \omega \in A \\ \\ 0 & \text{sinon } (\omega \in \overline{A}) \end{cases} \end{array}$$

1. Loi de Bernoulli

Soit A un événement d'un univers Ω .

Soit X la variable aléatoire

$$\begin{array}{cccc} X\colon & \Omega & \longrightarrow & \{0\,;\,1\} \\ \\ & \omega & \longmapsto & \begin{cases} 1 & \text{si } \omega \in A \\ \\ 0 & \text{sinon } (\omega \in \overline{A}) \end{cases} \end{array}$$

On dit que la variable aléatoire X suit une loi de Bernoulli $\mathcal{B}(p)$

1. Loi de Bernoulli

Soit A un événement d'un univers Ω .

Soit X la variable aléatoire :

$$\begin{array}{cccc} X\colon & \Omega & \longrightarrow & \{0\,;\,1\} \\ \\ & \omega & \longmapsto & \begin{cases} 1 & \text{si } \omega \in A \\ \\ 0 & \text{sinon } (\omega \in \overline{A}) \end{cases} \end{array}$$

On dit que la variable aléatoire X suit une loi de Bernoulli $\mathcal{B}(p)$ où p=P(A)=P(X=1) :

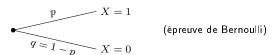
1. Loi de Bernoulli

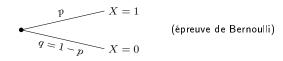
Soit A un événement d'un univers Ω .

Soit X la variable aléatoire :

$$\begin{array}{cccc} X\colon & \Omega & \longrightarrow & \{0\,;\,1\} \\ \\ & \omega & \longmapsto & \begin{cases} 1 & \text{si } \omega \in A \\ \\ 0 & \text{sinon } (\omega \in \overline{A}) \end{cases} \end{array}$$

On dit que la variable aléatoire X suit une loi de Bernoulli $\mathcal{B}(p)$ où p=P(A)=P(X=1) :

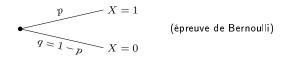




$$E(X) = \dots$$

$$E(X^2) = \dots$$

$$V(X) = E(X^2) - E(X)^2 = \dots$$
 donc $\sigma(X) = \sqrt{V(X)} = \dots$



$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times (1 - p) + 1 \times p = p$$

$$E(X^2) = \dots$$

$$V(X) = E(X^2) - E(X)^2 = \dots$$
 donc $\sigma(X) = \sqrt{V(X)} = \dots$

$$p \qquad X = 1$$
 (épreuve de Bernoulli)
$$q = 1 - p \qquad X = 0$$

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times (1 - p) + 1 \times p = p$$

$$E(X^2) = 0^2 \times P(X = 0) + 1^2 \times P(X = 1) = p$$

$$V(X) = E(X^2) - E(X)^2 = \dots$$
 donc $\sigma(X) = \sqrt{V(X)} = \dots$

$$\begin{array}{c|c} p & X=1 \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\$$

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times (1 - p) + 1 \times p = p$$

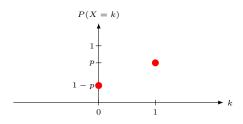
$$E(X^2) = 0^2 \times P(X = 0) + 1^2 \times P(X = 1) = p$$

$$V(X) = E(X^2) - E(X)^2 = p - p^2 = p(1-p) = pq \text{ donc } \sigma(X) = \sqrt{V(X)} = \dots$$

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times (1 - p) + 1 \times p = p$$

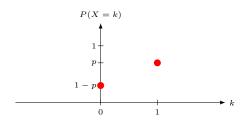
$$E(X^2) = 0^2 \times P(X = 0) + 1^2 \times P(X = 1) = p$$

$$V(X) = E(X^2) - E(X)^2 = p - p^2 = p(1 - p) = pq \text{ donc } \sigma(X) = \sqrt{V(X)} = \sqrt{pq}$$



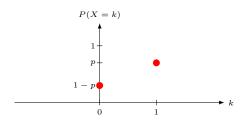
$$P(X = -1) = \dots$$
; $P(X = 0) = \dots$

$$P(X = 0, 4) =$$
; $P(X = 1, 3) =$



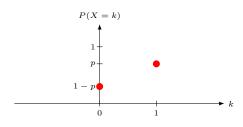
$$P(X = -1) = 0$$
, $P(X = 0) = -1$

$$P(X = 0, 4) =$$
; $P(X = 1, 3) =$



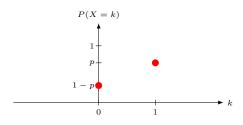
$$P(X = -1) = 0$$
; $P(X = 0) = 1 - p$

$$P(X = 0, 4) = P(X = 1, 3) =$$



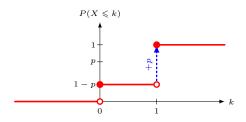
$$P(X = -1) = 0$$
; $P(X = 0) = 1 - p$

$$P(X = 0, 4) = 0$$
; $P(X = 1, 3) =$



$$P(X = -1) = 0$$
; $P(X = 0) = 1 - p$

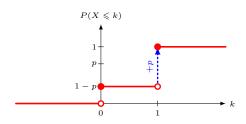
$$P(X = 0, 4) = 0$$
; $P(X = 1, 3) = 0$



$$F_X(-1) = \dots$$

$$F_X(0,3) = \dots$$

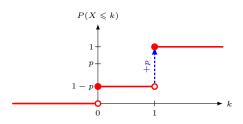
$$F_X(1,3) = \dots$$



$$F_X(-1) = P(X \leqslant -1) = 0$$

$$F_X(0,3) = \dots$$

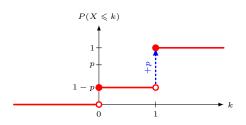
$$F_X(1,3) = \dots$$



$$F_X(-1) = P(X \leqslant -1) = 0$$

$$F_X(0,3) = P(X \le 0,3) = P(X = 0) = 1 - p$$

$$F_X(1,3) = \dots$$



$$F_X(-1) = P(X \leqslant -1) = 0$$

$$F_X(0,3) = P(X \le 0,3) = P(X = 0) = 1 - p$$

$$F_X(1,3) = P(X \le 1,3) = P(X = 0) + P(X = 1) = (1-p) + p = 1$$

2. Loi binomiale

On répète successivement

2. Loi binomiale

On répète successivement $oldsymbol{n}$ épreuves de Bernoulli indépendantes

2. Loi binomiale

On répète successivement n épreuves de Bernoulli **indépendantes** où l'on note à chaque fois la réalisation ou pas d'un événement A,

2. Loi binomiale

On répète successivement n épreuves de Bernoulli **indépendantes** où l'on note à chaque fois la réalisation ou pas d'un événement A, de probabilité p=P(A). A chaque épreuve de Bernoulli, on associe la variable aléatoire X_i , et on pose $X=X_1+X_2+\ldots+X_n$

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_{2} = 1$ $X_{3} = 1$ X_{1-p} $X_{3} = 0$		3
$X_1 = 1$ $X_2 = 1$ $X_3 = 0$		
$p - X_2 = 1$		
$X_2 = 0$ $1 - p X_3 = 0$		
$X_{2} = 1$ $X_{3} = 1$ $X_{3} = 0$		
\ X₁ = 0<		
$X_{2} = 0$ $X_{3} = 1$ X_{1-p} $X_{3} = 0$		
$1 - p X_3 = 0$		

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_{2} = 1$ $X_{3} = 1$ X_{1-p} $X_{3} = 0$		3
$X_1 = 1$ $X_2 = 1$ $X_3 = 0$		2
$p - X_2 = 1$		
$X_2 = 0$ $1 - p X_3 = 0$		
$X_{2} = 1$ $X_{3} = 1$ $X_{3} = 0$		
$X_{1} = 0$ $X_{2} = 1$ $X_{3} = 0$ $X_{1} = 0$ $X_{2} = 1$ $X_{3} = 0$ $X_{4} = 0$		
X_1 $X_2 = 0$ $X_3 = 1$ $X_3 = 0$		
$1 - p X_3 = 0$		

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_2 = 1$ $X_3 = 1$		3
$X_2 = 1 \qquad \qquad X_3 = 1$ $X_1 = 1 \qquad \qquad X_3 = 0$		2
$p - X_2 = 1$		2
$X_2 = 0$ $1 - p X_3 = 0$		
$X_2 = 1$ $X_3 = 1$		
$X_{1} = 0$ $X_{2} = 1$ $X_{3} = 1$ $X_{3} = 1$ $X_{4} = 0$ $X_{5} = 1$ $X_{7} = 0$ $X_{1} = 0$		
$X_1 = 0$ $X_2 = 0$ $X_3 = 1$ $X_3 = 0$		
$1 - p \qquad X_3 = 0$		

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_2 = 1$ $X_3 = 1$		3
$X_{1} = 1$ $X_{2} = 1$ $X_{3} = 1$ $X_{3} = 0$		2
$X_1 = X_2 = 0$ $X_3 = 1$		2
$X_2 = 0$ $1 - p X_3 = 0$		1
$X_2 = 1$ $X_3 = 1$		
$X_{1} = 0$ $X_{2} = 1$ $X_{3} = 0$ $X_{3} = 0$ $X_{4} = 0$ $X_{5} = 0$ $X_{7} = 0$		
$X_{2} = 0 $ $X_{3} = 1$ $X_{3} = 0$ $X_{3} = 0$		
$1 - p X_3 = 0$		

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_2 = 1$ $X_3 = 1$		3
$X_2 = 1 \qquad \qquad X_3 = 1$ $X_1 = 1 \qquad \qquad X_3 = 0$		2
$P \longrightarrow X_3 = 1$		2
$X_2 = 0$ $1 - p X_3 = 0$		1
$X_2 = 1$ $X_3 = 1$		2
$X_1 = 0$ $X_2 = 1$ $I - p$ $X_3 = 0$ $P = X_3 = 1$		
$X_1 = 0$ $X_2 = 0$ $X_3 = 1$ $X_3 = 0$		
$1 - p \qquad X_3 = 0$		

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_2 = 1$ $X_3 = 1$ $X_3 = 0$		3
$X_1 = 1$ $X_2 = 1$ $X_3 = 0$		2
$X_1 = X_2 = 0$ $X_3 = 1$ $X_2 = 0$ $X_3 = 0$		2
$1 - p X_3 = 0$		1
$X_2 = 1$		2
$X_1 = 0$ $X_2 = 0$		1
$X_{2} = 0$ $X_{3} = 1$ X_{1-p} $X_{3} = 0$		
$ 1 - p X_3 = 0 $		

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_2 = 1$ $X_3 = 1$ $X_3 = 0$		3
$X_1 = 1$ $X_2 = 1$ $X_3 = 0$		2
$p - X_2 = 1$		2
$X_2 = 0$ $1 - p X_3 = 0$		1
$X_2 = 1$		2
$X_{1} = 0$ $X_{2} = 1$ $X_{3} = 1$ $X_{3} = 0$ $X_{4} = 0$ $X_{5} = 1$ $X_{7} = 0$		1
$X_{2} = 0 $ $X_{3} = 1$ $X_{3} = 0$		1
$ \overbrace{1-p} X_3 = 0 $		

Pour $n=3$ on a :		
	Probabilités des chemins	X
$X_2 = 1$ $X_3 = 1$ $X_3 = 0$		3
$X_1 = 1$ $X_2 = 1$ $X_3 = 0$		2
$p X_3 = 1$		2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1
$X_2 = 1$		2
$X_1 = 0$ $X_1 = 0$		1
$X_{2} = 0$ $X_{3} = 1$ $X_{3} = 0$ $X_{3} = 0$		1
$1 - p X_3 = 0$		0

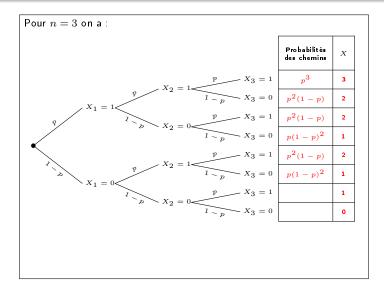
Pour $n=3$ on a :	_	
	Probabilités des chemins	X
$X_2 = 1$ $X_3 = 1$ $X_3 = 0$	p^3	3
$X_1 = 1$ $X_2 = X_3 = 0$		2
$p X_3 = 1$		2
$N = 0$ $1 - p X_3 = 0$		1
$X_2 = 1$ $X_3 = 1$		2
$X_{1} = 0$ $X_{2} = 1$ $X_{3} = 0$ $X_{3} = 0$ $X_{3} = 0$		1
$X_1 = 0$ $X_2 = 0$ $X_3 = 1$ $X_3 = 0$		1
$1 - p \qquad X_3 = 0$		0

Pour $n=3$ on a :			
		Probabilités des chemins	X
$X_2 =$	$p X_3 = 1$	p^3	3
$X_1 = 1$	$1 \underbrace{\qquad \qquad }_{l - p} X_3 = 0$	$p^2(1-p)$	2
V I D $X_2 =$	$p X_3 = 1$		2
	$0 \underbrace{1 - p} X_3 = 0$		1
$X_2 =$	$p X_3 = 1$		2
$X_1 = 0$ $X_2 = 0$	$1 \underbrace{\qquad \qquad }_{1 - p} X_3 = 0$		1
X_1 $X_2 =$	$p X_3 = 1$		1
. 2	$0 \underbrace{1 - p} X_3 = 0$		0

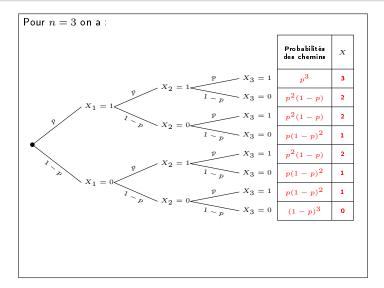
Pour $n=3$ on a :			
		Probabilités des chemins	X
$X_2 =$	$p X_3 = 1$	p^3	3
$X_1 = 1$	$1 \underbrace{\qquad \qquad}_{1-p} X_3 = 0$	$p^2(1-p)$	2
$X_1 = X_2 = X_2 = X_3 = X_4 = X_4 = X_5 $	$p X_3 = 1$	$p^2(1-p)$	2
	$0 \underbrace{1 - p} X_3 = 0$		1
$X_2 =$	$p X_3 = 1$		2
$X_1 = 0$ $X_2 = 0$	$1 - p X_3 = 0$		1
, _	$p X_3 = 1$		1
2	$0 \underbrace{\qquad \qquad }_{1 - p} X_3 = 0$		0

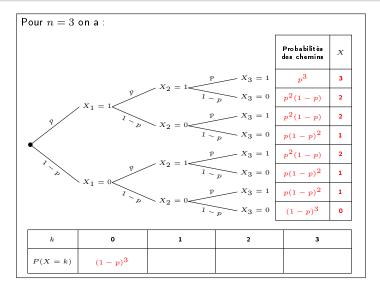
Pour $n=3$ on a :			
		Probabilités des chemins	X
, Xo	= 1	p^3	3
$X_1 = 1$	$=1\underbrace{1-p} X_3=0$	$p^2(1-p)$	2
	$= 0$ $X_3 = 1$	$p^2(1-p)$	2
	$=0 \underbrace{1-p} X_3 = 0$	$p(1-p)^2$	1
X2	= 1		2
$X_1 = 0$	$=1\underbrace{1-p}X_3=0$		1
$l \sim \chi_2$	$=0 \qquad \qquad$		1
_	$1 - p \qquad X_3 = 0$		0

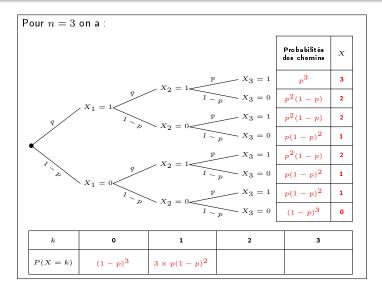
Pour $n=3$ on a :			
		Probabilités des chemins	X
$X_2 =$	$p X_3 = 1$	p^3	3
$X_1 = 1$	$= 1 \underbrace{\qquad \qquad }_{1 - p} X_3 = 0$	$p^2(1-p)$	2
Q $X_1 = X_2 = X_2 = X_3 = X_4 = X_4 = X_5 = $	$p X_3 = 1$		2
	$= 0 \underbrace{\qquad \qquad }_{1-p} X_3 = 0$	$p(1-p)^2$	1
$X_2 =$		$p^2(1-p)$	2
$X_1 = 0$ $X_2 = 0$	$= 1 \underbrace{\qquad \qquad }_{1 - p} X_3 = 0$		1
I_1 I_2 I_3 I_4 I_4 I_5	$p X_3 = 1$		1
. 2	$=0 \underbrace{1-p} X_3 = 0$		0

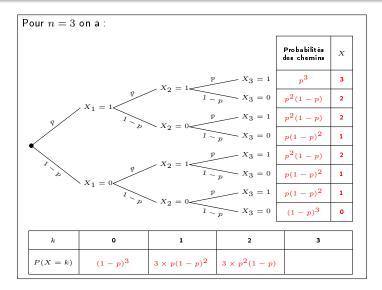


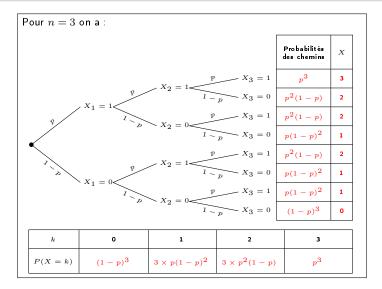
Pour $n=3$ on a :			
		Probabilités des chemins	X
$X_2 =$	$p X_3 = 1$	p^3	3
$X_1 = 1$	$1 - p \qquad X_3 = 0$	$p^{2}(1-p)$	2
$X_1 = X_2 = X_2 = X_3 = X_4 = X_4 = X_5 $	$p X_3 = 1$	$p^2(1-p)$	2
	$1 - p \qquad X_3 = 0$	$p(1-p)^2$	1
$X_2 =$	1	$p^2(1-p)$	2
$X_1 = 0$ $X_2 = 0$	$1 - p \qquad X_3 = 0$	$p(1-p)^2$	1
I D $X_2 =$	0	$p(1-p)^2$	1
2	$0 \longrightarrow 1 \longrightarrow X_3 = 0$		0

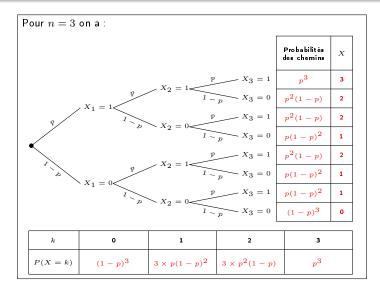












On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \underbrace{\binom{n}{k}} \times p^{k} (1-p)^{n-k}$$

 $\begin{array}{c} \text{ nb de façons de} \\ \text{réaliser } k \text{ \'evenements } A \\ \text{parmi } n \text{ \'epreuves.} \end{array}$

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \binom{n}{k} \times p^{k} (1 - p)^{n - k}$$

 $\begin{array}{c} \text{ nb de façons de} \\ \text{réaliser } k \text{ évenements } A \\ \text{parmi } n \text{ épreuves.} \end{array}$

$$E(X) =$$

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \underbrace{\binom{n}{k}} \times p^{k} (1 - p)^{n - k}$$

$$E(X) = E(X_1 + X_2 + \ldots + X_n) =$$

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \binom{n}{k} \times p^{k} (1 - p)^{n - k}$$

 $\begin{array}{c} \text{ nb de façons de} \\ \text{r\'ealiser } k \text{ \'evenements } A \\ \text{parmi } n \text{ \'epreuves.} \end{array}$

$$E(X) = E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n) =$$

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \underbrace{\binom{n}{k}}_{\text{nb de facons de}} \times p^k (1 - p)^{n - k}$$

 $\operatorname{\mathsf{nb}}$ de façons de réaliser k évenements A parmi n épreuves.

$$E(X) = E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n) = p + p + \dots + p = np$$

$$V(X) =$$

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \underbrace{\binom{n}{k}}_{} \times p^{k} (1-p)^{n-k}$$

$$E(X) = E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n) = p + p + \dots + p = np$$

$$V(X) = \sum_{i=1}^{n} V(X_i) = npq$$

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \underbrace{\binom{n}{k}} \times p^k (1-p)^{n-k}$$

$$E(X) = E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n) = p + p + ... + p = np$$

$$V(X) = \sum_{i=1}^{n} V(X_i) = npq \text{ car les } X_i \text{ sont}$$

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

$$P(X = k) = \underbrace{\binom{n}{k}}_{\text{nb de facons de}} \times p^k (1 - p)^{n - k}$$

$$E(X) = E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n) = p + p + \dots + p = np$$

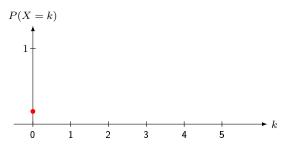
$$V(X) = \sum_{i=1}^{N} V(X_i) = npq$$
 car les X_i sont indépendantes. Donc $\sigma(X) = \sum_{i=1}^{N} V(X_i) = npq$ car les X_i sont indépendantes.

On dit que la variable aléatoire X suit une loi de Binomiale $\mathcal{B}(n,p)$:

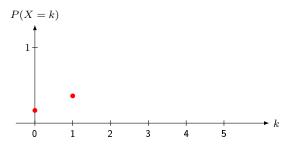
$$P(X = k) = \underbrace{\binom{n}{k}}_{\text{nb de facons de}} \times p^k (1 - p)^{n - k}$$

$$E(X) = E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n) = p + p + ... + p = np$$

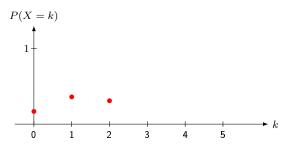
$$V(X) = \sum_{i=1}^{N} V(X_i) = npq$$
 car les X_i sont indépendantes. Donc $\sigma(X) = \sqrt{npq}$



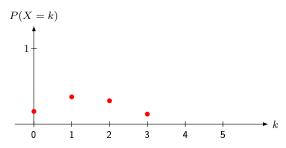
$$P(X = 2) =$$



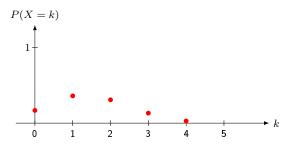
$$P(X = 2) =$$



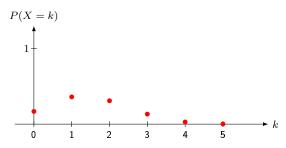
$$P(X = 2) =$$



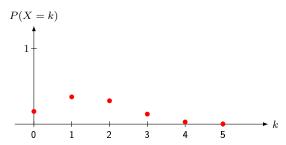
$$P(X = 2) =$$

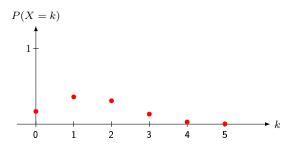


$$P(X = 2) =$$

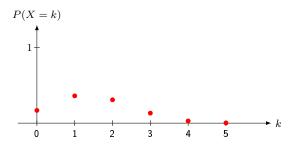


$$P(X = 2) =$$





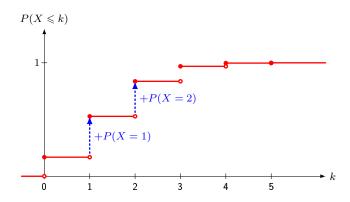
$$P(X = 2) = {5 \choose 2} \times 0,3^2 \times 0,343 =$$



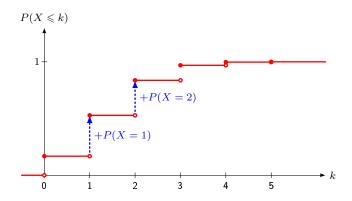
$$P(X = 2) = {5 \choose 2} \times 0,3^2 \times 0,343 = \frac{5 \times 4}{2} \times 0,09 \times 0,7^3 = 0,3087$$

Fonction de répartition ${\cal F}_X$

Fonction de répartition \mathcal{F}_X

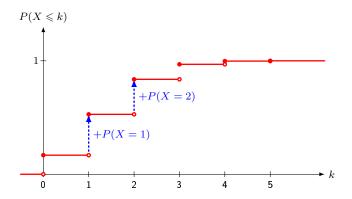


Fonction de répartition \mathcal{F}_X



$$F_X(2,7) =$$

Fonction de répartition F_X



$$F_X(2,7) = P(X \le 2,7) = P(X = 0) + P(X = 1) + P(X = 2)$$

Exemple n° 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**

Exemple n° 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

Exemple nº 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

• Les tirages de chaque boules sont indépendants les uns des autres car :

Exemple nº 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

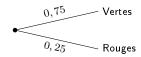
 Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes

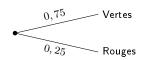
- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



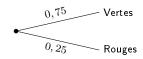
Exemple nº 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



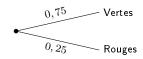
• P(X = 3) =

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



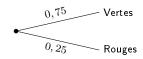
•
$$P(X=3) = {8 \choose 3} \times 0.75^3 \times 0.25^5 =$$

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



•
$$P(X=3) = {8 \choose 3} \times 0.75^3 \times 0.25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0.75^3 \times 0.25^5$$

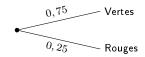
- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



•
$$P(X=3) = {8 \choose 3} \times 0,75^3 \times 0,25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0,75^3 \times 0,25^5 \simeq 0,0231$$

Exemple n° 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :

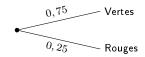


•
$$P(X=3) = {8 \choose 3} \times 0,75^3 \times 0,25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0,75^3 \times 0,25^5 \simeq 0,0231$$

 \bullet E(X) =

Exemple n° 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

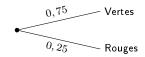
- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



•
$$P(X=3) = {8 \choose 3} \times 0,75^3 \times 0,25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0,75^3 \times 0,25^5 \simeq 0,0231$$

• $E(X) = np = 8 \times 0,75 = 6$,

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :

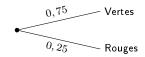


•
$$P(X=3) = {8 \choose 3} \times 0,75^3 \times 0,25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0,75^3 \times 0,25^5 \simeq 0,0231$$

•
$$E(X) = np = 8 \times 0,75 = 6$$
, $V(X) =$

Exemple n° 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :

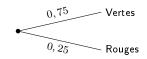


•
$$P(X=3) = {8 \choose 3} \times 0,75^3 \times 0,25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0,75^3 \times 0,25^5 \simeq 0,0231$$

• $E(X) = np = 8 \times 0,75 = 6$, $V(X) = npq = 8 \times 0,75 \times 0,25 = 1,5$,

Exemple n° 1: On considère une urne contenant 30 boules vertes et 10 boules rouges. On prélève 8 boules. Pour chacune d'elles, on note sa couleur et on la remet dans l'urne avant d'ôter la suivante. On dit effectuer un tirage de 8 boules **avec remise**. On note X la variable aléatoire qui compte le nombre de boules vertes tirées.

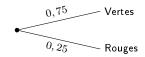
- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



•
$$P(X=3) = {8 \choose 3} \times 0,75^3 \times 0,25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0,75^3 \times 0,25^5 \simeq 0,0231$$

• $E(X)=np=8\times0,75=6$, $V(X)=npq=8\times0,75\times0,25=1,5$, et $\sigma_X=$

- Les tirages de chaque boules sont indépendants les uns des autres car : dans l'urne la proportion des boules vertes par rapport au rouges ne change pas.
- La variable aléatoire X suit une loi binomiale $\mathcal{B}\left(8; \frac{30}{40}\right)$ car l'expérience aléatoire consiste à répéter successivement de manière indépendantes l'épreuve de Bernoulli suivante :



- $P(X=3) = {8 \choose 3} \times 0,75^3 \times 0,25^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0,75^3 \times 0,25^5 \simeq 0,0231$
- \bullet E(X)=np=8 imes0,75=6 , V(X)=npq=8 imes0,75 imes0,25=1,5 , et $\sigma_X=\sqrt{1,5}\simeq1,225$

Tirage avec remise

Une urne contient N boules dont b boules blanches. On tire n boules avec remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- la proportion de boules blanches dans l'urne est $p = \frac{b}{N}$
- ullet la variable aléatoire X suit une loi binomiale ${\cal B}(n,p)$

Tirage avec remise

Une urne contient N boules dont b boules blanches. On tire n boules avec remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- la proportion de boules blanches dans l'urne est $p=rac{b}{N}$
- ullet la variable aléatoire X suit une loi binomiale $\mathcal{B}(n,p)$

Remarque : Np est le nombre de boules blanches contenue dans l'urne.

Tirage avec remise

Une urne contient N boules dont b boules blanches. On tire n boules avec remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- la proportion de boules blanches dans l'urne est $p=rac{b}{N}$
- ullet la variable aléatoire X suit une loi binomiale ${\cal B}(n,p)$

 ${\bf Remarque:}\ Np\ {\bf est}\ \ {\bf le\ nombre\ de\ boules\ blanches\ contenue\ dans\ l'urne.}$

Exercice n° 1: Un avion peut accueillir 20 personnes. Des statistiques montrent que 25% clients ayant réservé ne viennent pas. Soit X la variable aléatoire : « nombre de clients qui viennent après réservation parmi 20 » .

Tirage avec remise

Une urne contient N boules dont b boules blanches. On tire n boules avec remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- la proportion de boules blanches dans l'urne est $p=rac{b}{N}$
- ullet la variable aléatoire X suit une loi binomiale ${\cal B}(n,p)$

Remarque : Np est le nombre de boules blanches contenue dans l'urne.

Exercice nº 1: Un avion peut accueillir 20 personnes. Des statistiques montrent que 25% clients ayant réservé ne viennent pas. Soit X la variable aléatoire : « nombre de clients qui viennent après réservation parmi 20 » .

ullet Quelle est la loi de X?

Tirage avec remise

Une urne contient N boules dont b boules blanches. On tire n boules avec remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- la proportion de boules blanches dans l'urne est $p = \frac{b}{N}$
- ullet la variable aléatoire X suit une loi binomiale ${\cal B}(n,p)$

Remarque : Np est le nombre de boules blanches contenue dans l'urne.

Exercice nº 1: Un avion peut accueillir 20 personnes. Des statistiques montrent que 25% clients ayant réservé ne viennent pas. Soit X la variable aléatoire : « nombre de clients qui viennent après réservation parmi 20 » .

- \bigcirc Quelle est la loi de X?
- Quelle est son espérance, son écart-type?

Tirage avec remise

Une urne contient N boules dont b boules blanches. On tire n boules avec remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- la proportion de boules blanches dans l'urne est $p = \frac{b}{N}$
- ullet la variable aléatoire X suit une loi binomiale ${\cal B}(n,p)$

 ${\bf Remarque:}\ Np\ {\bf est}\ \ {\bf le\ nombre\ de\ boules\ blanches\ contenue\ dans\ l'urne.}$

Exercice nº 1: Un avion peut accueillir 20 personnes. Des statistiques montrent que 25% clients ayant réservé ne viennent pas. Soit X la variable aléatoire : « nombre de clients qui viennent après réservation parmi 20 » .

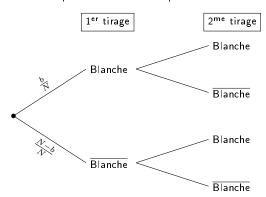
- \bigcirc Quelle est la loi de X?
- Quelle est son espérance, son écart-type?
- ② Quelle est la probabilité pour que X soit égal à 15?

3. Loi hypergéométrique

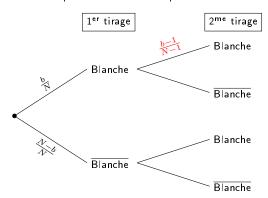
Une urne contient N boules dont b boules blanches. On tire n boules de l'urne, mais cette fois-ci, sans remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

3. Loi hypergéométrique

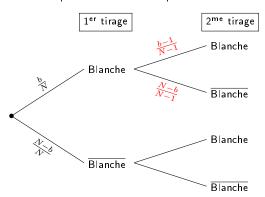
3. Loi hypergéométrique



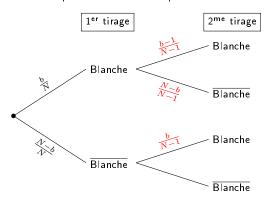
3. Loi hypergéométrique



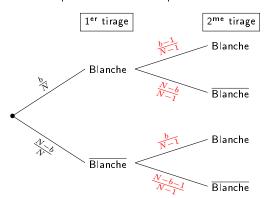
3. Loi hypergéométrique



3. Loi hypergéométrique

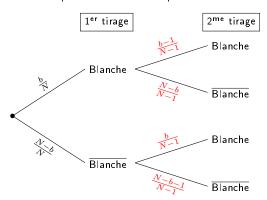


3. Loi hypergéométrique

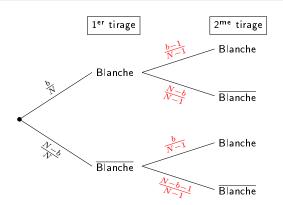


3. Loi hypergéométrique

Une urne contient N boules dont b boules blanches. On tire n boules de l'urne, mais cette fois-ci, sans remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage. On n'est plus dans une répétition d'une même épreuve de Bernoulli :



Les tirages successifs sont ici dépendants puisque la composition de l'urne est différente après chaque tirage.



Notons X le nombre de boule blanches tirées. On démontre que $P(X=k)=\frac{\binom{b}{k}\times\binom{N-b}{n-k}}{\binom{N}{n}}$.

Tirage sans remise

Une urne contient N boules dont b boules blanches. On tire n boules sans remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- La proportion initiale de boules blanches dans l'urne est $p=\frac{b}{N}$, et q=1-p est la proportion initiale des boules qui ne sont pas blanches.
- La variable aléatoire X suit une loi hypergéométrique $\mathcal{H}(n,N,p)$

•
$$E(X) = np$$
 et $Var(X) = npq\left(\frac{N-n}{N-1}\right)$.

Tirage sans remise

Une urne contient N boules dont b boules blanches. On tire n boules sans remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- La proportion initiale de boules blanches dans l'urne est $p = \frac{b}{N}$, et q = 1 p est la proportion initiale des boules qui ne sont pas blanches.
- La variable aléatoire X suit une loi hypergéométrique $\mathcal{H}(n,N,p)$

•
$$E(X) = np$$
 et $Var(X) = npq\left(\frac{N-n}{N-1}\right)$.

Exercice n° 2: On prend au hasard, en même temps, trois ampoules dans un lot de 15 dont 5 sont défectueuses. On note X le nombre d'ampoules défectueuses.

Tirage sans remise

Une urne contient N boules dont b boules blanches. On tire n boules sans remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- La proportion initiale de boules blanches dans l'urne est $p = \frac{b}{N}$, et q = 1 p est la proportion initiale des boules qui ne sont pas blanches.
- La variable aléatoire X suit une loi hypergéométrique $\mathcal{H}(n,N,p)$

•
$$E(X) = np$$
 et $Var(X) = npq\left(\frac{N-n}{N-1}\right)$.

Exercice n° 2: On prend au hasard, en même temps, trois ampoules dans un lot de 15 dont 5 sont défectueuses. On note X le nombre d'ampoules défectueuses.

- Calcule la probabilité des événements suivants
 - A : « exactement une ampoule est défectueuse » .
 - ullet B: « au moins une ampoule est défectueuse »;
 - C : « les 3 ampoules sont défectueuses » ;

Tirage sans remise

Une urne contient N boules dont b boules blanches. On tire n boules sans remise, et on note X la variable aléatoire qui compte le nombre de boules blanches dans ce tirage.

- La proportion initiale de boules blanches dans l'urne est $p=\frac{b}{N}$, et q=1-p est la proportion initiale des boules qui ne sont pas blanches.
- La variable aléatoire X suit une loi hypergéométrique $\mathcal{H}(n,N,p)$

•
$$E(X) = np$$
 et $Var(X) = npq\left(\frac{N-n}{N-1}\right)$.

Exercice n° 2: On prend au hasard, en même temps, trois ampoules dans un lot de 15 dont 5 sont défectueuses. On note X le nombre d'ampoules défectueuses.

- O Calcule la probabilité des événements suivants
 - A : « exactement une ampoule est défectueuse » .
 - B: « au moins une ampoule est défectueuse »;
 - C : « les 3 ampoules sont défectueuses » ;
- ② Calcule l'espérance puis l'écart-type de X.

II. Les lois continues.

Définition:

Une fonction de **densité** ou de distribution de probabilité est une fonction réelle f qui satisfait aux deux conditions suivantes :

$$f$$
 est positive et $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$

II. Les lois continues.

Définition:

Une fonction de **densité** ou de distribution de probabilité est une fonction réelle f qui satisfait aux deux conditions suivantes :

$$f$$
 est positive et $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$

Définition:

On dit qu'une variable aléatoire X a pour densité ou **distribution** de probabilité la fonction f, si pour tous nombres réels a et b tels que $a \le b$:

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} f(x) \, \mathrm{d}x$$

On dit alors que la variable aléatoire X est continue.

Définition:

Une fonction de **densité** ou de distribution de probabilité est une fonction réelle f qui satisfait aux deux conditions suivantes :

$$f$$
 est positive et $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$

Définition:

On dit qu'une variable aléatoire X a pour densité ou **distribution** de probabilité la fonction f, si pour tous nombres réels a et b tels que $a \le b$:

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} f(x) \, \mathrm{d}x$$

On dit alors que la variable aléatoire X est continue.

Définition:

L'espérance d'une variable aléatoire continue X, notée E(X) est $\int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$

1. Loi exponentielle.

Définition:

Soit λ un nombre réel **strictement positif**. On dit qu'un variable aléatoire X suit une loi exponentielle de paramètre $\lambda>0$, notée $\mathcal{E}(\lambda)$, si sa densité de probabilité est :

1. Loi exponentielle.

Définition:

Soit λ un nombre réel **strictement positif**. On dit qu'un variable aléatoire X suit une loi exponentielle de paramètre $\lambda>0$, notée $\mathcal{E}(\lambda)$, si sa densité de probabilité est :

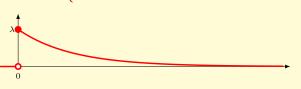
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \geqslant 0\\ 0 & \text{si } x < 0 \end{cases}$$

1. Loi exponentielle.

Définition:

Soit λ un nombre réel **strictement positif**. On dit qu'un variable aléatoire X suit une loi exponentielle de paramètre $\lambda>0$, notée $\mathcal{E}(\lambda)$, si sa densité de probabilité est :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \geqslant 0\\ 0 & \text{si } x < 0 \end{cases}$$



$$E(X) =$$

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx =$$

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

On calcule de même en intégrant par parties :

M. Drouot

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E(X^2) =$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E(X^2) = \lambda \int_0^{+\infty} x^2 e^{-\lambda x} dx =$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E(X^2) = \lambda \int_0^{+\infty} x^2 e^{-\lambda x} dx = \left[-x^2 e^{-\lambda x} \right]_0^{+\infty} + 2 \int_0^{+\infty} x e^{-\lambda x} dx =$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

On calcule de même en intégrant par parties :

$$E(X^2) = \lambda \int_0^{+\infty} x^2 e^{-\lambda x} dx = \left[-x^2 e^{-\lambda x} \right]_0^{+\infty} + 2 \int_0^{+\infty} x e^{-\lambda x} dx = \frac{2}{\lambda} E(X) = \frac{2}{\lambda^2}$$

M. Drouot Chapitre 3 - Loi de probabilités

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E(X^{2}) = \lambda \int_{0}^{+\infty} x^{2} e^{-\lambda x} dx = \left[-x^{2} e^{-\lambda x} \right]_{0}^{+\infty} + 2 \int_{0}^{+\infty} x e^{-\lambda x} dx = \frac{2}{\lambda} E(X) = \frac{2}{\lambda^{2}}$$

D'où
$$V(X) =$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E(X^{2}) = \lambda \int_{0}^{+\infty} x^{2} e^{-\lambda x} dx = \left[-x^{2} e^{-\lambda x} \right]_{0}^{+\infty} + 2 \int_{0}^{+\infty} x e^{-\lambda x} dx = \frac{2}{\lambda} E(X) = \frac{2}{\lambda^{2}}$$

D'où
$$V(X) = E(X^2) - E(X)^2 =$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E(X^{2}) = \lambda \int_{0}^{+\infty} x^{2} e^{-\lambda x} dx = \left[-x^{2} e^{-\lambda x} \right]_{0}^{+\infty} + 2 \int_{0}^{+\infty} x e^{-\lambda x} dx = \frac{2}{\lambda} E(X) = \frac{2}{\lambda^{2}}$$

D'où
$$V(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} =$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E(X^{2}) = \lambda \int_{0}^{+\infty} x^{2} e^{-\lambda x} dx = \left[-x^{2} e^{-\lambda x} \right]_{0}^{+\infty} + 2 \int_{0}^{+\infty} x e^{-\lambda x} dx = \frac{2}{\lambda} E(X) = \frac{2}{\lambda^{2}}$$

D'où
$$V(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

On calcule l'espérance en intégrant par parties :

$$E(X) = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \left[-x e^{-\lambda x} \right]_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

On calcule de même en intégrant par parties :

$$E\left(X^2\right) = \lambda \int_0^{+\infty} x^2 \mathrm{e}^{-\lambda x} \, \mathrm{d}x = \left[-x^2 \mathrm{e}^{-\lambda x}\right]_0^{+\infty} + 2 \int_0^{+\infty} x \mathrm{e}^{-\lambda x} \, \mathrm{d}x = \frac{2}{\lambda} E\left(X\right) = \frac{2}{\lambda^2}$$

D'où
$$V\left(X\right)=E\left(X^2\right)-E\left(X\right)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}$$

Théorème

Si une variable aléatoire X suit une loi exponentielle de paramètre $\lambda>0$, alors :

$$E\big(X\big) = \frac{1}{\lambda} \text{ et } V\big(X\big) = \frac{1}{\lambda^2}$$

Pour $x\geqslant 0$, la fonction de répartition F est définie par :

$$F(x) = P(X \leqslant x) =$$

Pour $x\geqslant 0$, la fonction de répartition F est définie par :

$$F(x) = P(X \leqslant x) = \int_0^x \lambda e^{-\lambda t} dt =$$

Pour $x\geqslant 0$, la fonction de répartition F est définie par :

$$F(x) = P(X \leqslant x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}$$

Pour $x\geqslant 0$, la fonction de répartition F est définie par :

$$F(x) = P(X \leqslant x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}$$

Théorème

La fonction de répartition d'une variable aléatoire suivant une loi exponentielle de paramètre $\lambda>0$, est :

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0 \end{cases}$$

•
$$P(T=2) =$$

•
$$P(T=2) = \int_{2}^{2} 0.5e^{-0.5x} dx = 0$$

•
$$P(T=2) = \int_{2}^{2} 0.5e^{-0.5x} dx = 0$$

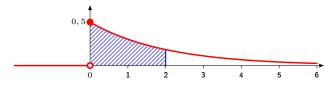
•
$$P(T \le 2) =$$

•
$$P(T \le 2) = \int_{-\infty}^{2} 0.5e^{-0.5x} dx =$$

•
$$P(T \le 2) = \int_{-\infty}^{2} 0.5e^{-0.5x} dx = F_T(2) = 1 - e^{-0.5 \times 2} =$$

•
$$P(T \le 2) = \int_{-\infty}^{2} 0.5e^{-0.5x} dx = F_T(2) = 1 - e^{-0.5 \times 2} = 1 - e^{-1} \simeq 0.632$$

•
$$P(T \le 2) = \int_{-\infty}^{2} 0.5e^{-0.5x} dx = F_T(2) = 1 - e^{-0.5 \times 2} = 1 - e^{-1} \simeq 0.632$$



•
$$P(2 \leqslant T \leqslant 4) =$$

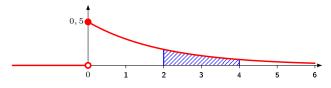
•
$$P(2 \le T \le 4) = \int_2^4 0.5 e^{-0.5x} dx =$$

•
$$P(2 \le T \le 4) = \int_2^4 0.5e^{-0.5x} dx = F_T(4) - F_T(2) =$$

•
$$P(2 \le T \le 4) = \int_2^4 0.5 e^{-0.5x} dx = F_T(4) - F_T(2) = 1 - e^{-2} - (1 - e^{-1}) = 0$$

•
$$P(2 \le T \le 4) = \int_2^4 0.5 e^{-0.5x} dx = F_T(4) - F_T(2) = 1 - e^{-2} - (1 - e^{-1}) = e^{-1} - e^{-2} \simeq 0.233$$

•
$$P(2 \le T \le 4) = \int_2^4 0.5 e^{-0.5x} dx = F_T(4) - F_T(2) = 1 - e^{-2} - (1 - e^{-1}) = e^{-1} - e^{-2} \simeq 0.233$$



•
$$P(T \ge 2) =$$

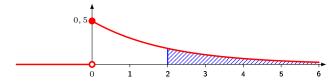
•
$$P(T \ge 2) = \int_{2}^{+\infty} 0.5 e^{-0.5x} dx =$$

•
$$P(T \ge 2) = \int_{2}^{+\infty} 0.5e^{-0.5x} dx = 1 - F_T(2) =$$

•
$$P(T \ge 2) = \int_{2}^{+\infty} 0.5 e^{-0.5x} dx = 1 - F_T(2) = 1 - (1 - e^{-1}) =$$

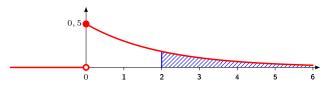
•
$$P(T \ge 2) = \int_{2}^{+\infty} 0.5e^{-0.5x} dx = 1 - F_T(2) = 1 - (1 - e^{-1}) = e^{-1} \simeq 0.368$$

•
$$P(T \ge 2) = \int_{2}^{+\infty} 0.5e^{-0.5x} dx = 1 - F_T(2) = 1 - (1 - e^{-1}) = e^{-1} \simeq 0.368$$



Exemple nº 5 : La variable aléatoire T suit une loi $\mathcal{E}(0,5)$.

•
$$P(T \ge 2) = \int_{2}^{+\infty} 0.5e^{-0.5x} dx = 1 - F_T(2) = 1 - (1 - e^{-1}) = e^{-1} \simeq 0.368$$



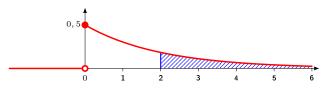
Théorème

La loi exponentielle est l'unique loi continue sans mémoire : Si X suit une loi exponentielle

pour tout
$$t>0$$
 et tout $h>0$, $P_{(X\geqslant t)}(X\geqslant t+s)=P(X\geqslant s)$

Exemple nº 5 : La variable aléatoire T suit une loi $\mathcal{E}(0,5)$

•
$$P(T \ge 2) = \int_{2}^{+\infty} 0.5e^{-0.5x} dx = 1 - F_T(2) = 1 - (1 - e^{-1}) = e^{-1} \simeq 0.368$$



Théorème

La loi exponentielle est l'unique loi continue $\operatorname{\mathsf{sans}}$ $\operatorname{\mathsf{m\'emoire}}$: Si X suit une loi exponentielle

pour tout
$$t>0$$
 et tout $h>0$, $P_{(X\geqslant t)}(X\geqslant t+s)=P(X\geqslant s)$

Remarque: Si la durée de votre survie, en années, suivait une loi exponentielle, alors, que vous ayez vécu t=4 ans ou t=80 ans, votre probabilité de vivre encore s=20 ans est la même.

Exercice n° 3: La durée de vie, T, d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda=0,2$.

Exercice n° 3: La durée de vie, T, d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda=0,2$.

Quelle est la probabilité qu'un robot n'ait pas eu de panne au cours des deux premières années?

Exercice n° 3: La durée de vie, T, d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda=0,2$.

• Quelle est la probabilité qu'un robot n'ait pas eu de panne au cours des deux premières années? $P(T \ge 2) = \mathrm{e}^{-0.2 \times 2} = \mathrm{e}^{-0.4} \simeq 0,630$

Exercice n° 3: La durée de vie, T, d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda=0,2$.

- **Q** Quelle est la probabilité qu'un robot n'ait pas eu de panne au cours des deux premières années? $P(T \ge 2) = \mathrm{e}^{-0.2 \times 2} = \mathrm{e}^{-0.4} \simeq 0,630$
- ② A quel instant t, à un mois près, la probabilité qu'un robot tombe en panne pour la première fois est-elle de 0.5?

Exercice n° 3: La durée de vie, T, d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda=0,2$.

- Quelle est la probabilité qu'un robot n'ait pas eu de panne au cours des deux premières années? $P(T \ge 2) = \mathrm{e}^{-0.2 \times 2} = \mathrm{e}^{-0.4} \simeq 0,630$
- A quel instant t, à un mois près, la probabilité qu'un robot tombe en panne pour la première fois est-elle de 0,5?

$$P(T \le t) = 0.5 \iff 1 - e^{-0.2t} = 0.5 \iff t = \frac{\ln(2)}{0.2} \approx 3,466$$

0,46 année durent $0,46\times12=5,52$ mois. L'instant t cherché est 3 ans et 5 mois à un mois près.

Exercice n° 3: La durée de vie, T, d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda=0,2$.

- **Q** Quelle est la probabilité qu'un robot n'ait pas eu de panne au cours des deux premières années? $P(T \ge 2) = \mathrm{e}^{-0.2 \times 2} = \mathrm{e}^{-0.4} \simeq 0,630$
- ② A quel instant t, à un mois près, la probabilité qu'un robot tombe en panne pour la première fois est-elle de 0.5?

$$P(T \le t) = 0.5 \iff 1 - e^{-0.2t} = 0.5 \iff t = \frac{\ln(2)}{0.2} \approx 3.466$$

- 0,46 année durent $0,46\times12=5,52$ mois. L'instant t cherché est 3 ans et 5 mois à un mois près.
- Quelle est la durée de vie moyenne d'un robot?

Exercice n° 3: La durée de vie, T, d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda=0,2$.

- **Q** Quelle est la probabilité qu'un robot n'ait pas eu de panne au cours des deux premières années? $P(T \ge 2) = \mathrm{e}^{-0.2 \times 2} = \mathrm{e}^{-0.4} \simeq 0,630$
- ② A quel instant t, à un mois près, la probabilité qu'un robot tombe en panne pour la première fois est-elle de 0.5?

$$P(T \le t) = 0.5 \iff 1 - e^{-0.2t} = 0.5 \iff t = \frac{\ln(2)}{0.2} \approx 3.466$$

- 0,46 année durent $0,46\times 12=5,52$ mois. L'instant t cherché est 3 ans et 5 mois à un mois près.
- Quelle est la durée de vie moyenne d'un robot?

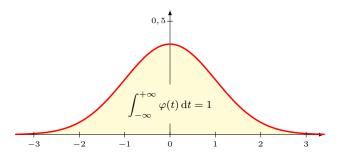
$$E(T)=rac{1}{\lambda}=5$$
 ans.

2. La loi normale centrée réduite.

Définition:

On appelle densité de probabilité de **Laplace-Gauss**, la fonction arphi définie sur $\mathbb R$ par

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

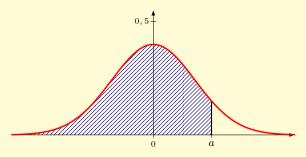


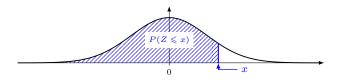
- La fonction φ est paire;
- son maximum est atteint en 0;
- ullet La courbe \mathcal{C}_{arphi} est appelée courbe en cloche ou courbe de Gauss.

Définition:

On dit que la variable aléatoire Z suit une loi normale **centrée réduite**, notée $\mathcal{N}(0,1)$ si sa densité de probabilité est égale à la fonction φ . Sa fonction de répartition, notée Φ , est définie par :

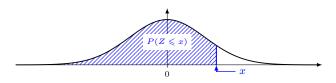
$$\Phi(a) = P(Z \leqslant a) = \int_{-\infty}^{a} \varphi(t) dt$$





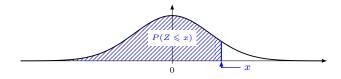
x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162

$$P(Z \leq 1, 27) \simeq$$



x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162

$$P(Z \le 1, 27) \simeq 0,8980$$



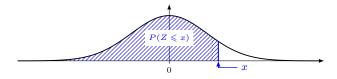
$$P(Z\leqslant 1,27)\simeq {\color{red}0,8980} \qquad P(Z\leqslant 0,23)\simeq$$



$$P(Z \le 1, 27) \simeq 0,8980$$

$$P(Z\leqslant 1,27)\simeq \ \ \textbf{0,8980} \qquad P(Z\leqslant 0,23)\simeq \ \ \textbf{0,5910} \qquad P(Z\leqslant 0,09)\simeq$$

$$\Gamma(Z \leqslant 0,09) \cong$$

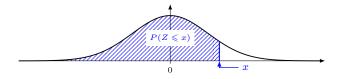


$$P(Z \le 1, 27) \simeq 0,8980$$
 $P(Z \le 0, 23) \simeq 0,5910$ $P(Z \le 0, 09) \simeq 0,5359$

$$P(Z \le 0, 23) \simeq 0,5910$$

$$P(Z \le 0,09) \simeq 0,5359$$

$$P(Z \leqslant 1, 5) \simeq$$

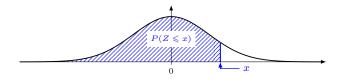


$$P(Z \le 1, 27) \simeq 0,8980$$
 $P(Z \le 0, 23) \simeq 0,5910$ $P(Z \le 0,09) \simeq 0,5359$

$$P(Z \leq 0, 23) \simeq 0,5910$$

$$P(Z \le 0,09) \simeq 0,5359$$

$$P(Z \le 1, 5) \simeq 0,9332 \quad P(Z < 1, 5) \simeq$$

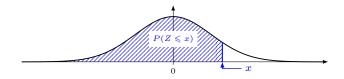


$$P(Z \le 1, 27) \simeq 0,8980$$
 $P(Z \le 0, 23) \simeq 0,5910$ $P(Z \le 0,09) \simeq 0,5359$

$$P(Z \le 0, 23) \simeq 0,5910$$

$$P(Z \le 0,09) \simeq 0,5359$$

$$P(Z \le 1, 5) \simeq 0,9332$$
 $P(Z < 1, 5) \simeq 0,9332$ $P(Z \ge 1, 5) \simeq$

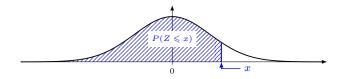


$$P(Z \le 1, 27) \simeq 0,8980$$
 $P(Z \le 0, 23) \simeq 0,5910$ $P(Z \le 0,09) \simeq 0,5359$

$$P(Z \le 0, 23) \simeq 0,5910$$

$$P(Z \le 0,09) \simeq 0,5359$$

$$P(Z \le 1, 5) \simeq 0,9332$$
 $P(Z < 1, 5) \simeq 0,9332$ $P(Z \ge 1, 5) \simeq 1 - 0,9332 =$



$$P(Z \le 1, 27) \simeq 0,8980$$
 $P(Z \le 0, 23) \simeq 0,5910$ $P(Z \le 0,09) \simeq 0,5359$

$$P(Z \le 0, 23) \simeq 0,5910$$

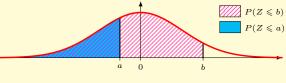
$$P(Z \le 0,09) \simeq 0,5359$$

$$P(Z \le 1,5) \simeq 0,9332 \quad P(Z < 1,5) \simeq 0,9332 \quad P(Z \ge 1,5) \simeq 1-0,9332 = 0,0668$$

Théorème

Si une variable aléatoire Z suit une loi normale centrée réduite alors pour tout réels a et b, a < b on a :

$$P(a \leqslant Z \leqslant b) = P(Z \leqslant b) - P(Z \leqslant a);$$



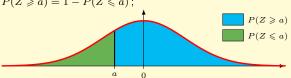
Théorème

 \H Si une variable aléatoire Z suit une loi normale centrée réduite alors pour tout réels a et b,

 $a < b ext{ on a}$:



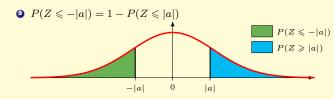
2 $P(Z \ge a) = 1 - P(Z \le a)$;



Théorème

Si une variable aléatoire Z suit une loi normale centrée réduite alors pour tout réels a et b,

$$a < b$$
 on a :



Exemple ${\bf n^o\, 6}: \ Z$ suit une loi normale centrée réduite.

P(Z ≥ 1, 27)

$$P(Z \geqslant 1, 27) = 1 - P(Z \leqslant 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

②
$$P(-1 ≤ Z ≤ 1)$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \leqslant Z \leqslant 1)$$

$$= P(Z \leqslant 1) - P(Z \leqslant -1)$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \leqslant Z \leqslant 1)$$

$$= P(Z \leqslant 1) - P(Z \leqslant -1)$$

$$= P(Z \leqslant 1) - (1 - P(Z \leqslant 1))$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \le Z \le 1)$$

$$= P(Z \le 1) - P(Z \le -1)$$

$$= P(Z \le 1) - (1 - P(Z \le 1))$$

$$= 2P(Z \le 1) - 1$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \le Z \le 1)$$
= $P(Z \le 1) - P(Z \le -1)$
= $P(Z \le 1) - (1 - P(Z \le 1))$
= $2P(Z \le 1) - 1$

$$≈ 2 × 0.8413 - 1 = 0.6826$$

③
$$P(Z \ge -0.74)$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \le Z \le 1)$$
= $P(Z \le 1) - P(Z \le -1)$
= $P(Z \le 1) - (1 - P(Z \le 1))$
= $2P(Z \le 1) - 1$

$$≈ 2 × 0.8413 - 1 = 0.6826$$

$$P(Z \ge -0.74) = 1 - P(Z \le -0.74) = iii.$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \le Z \le 1)$$
= $P(Z \le 1) - P(Z \le -1)$
= $P(Z \le 1) - (1 - P(Z \le 1))$
= $2P(Z \le 1) - 1$

≈ $2 \times 0.8413 - 1 = 0.6826$

$$P(Z \geqslant -0.74) = 1 - P(Z \leqslant -0.74) = 1 - (1 - P(Z \leqslant 0.74)) =$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \le Z \le 1)$$
= $P(Z \le 1) - P(Z \le -1)$
= $P(Z \le 1) - (1 - P(Z \le 1))$
= $2P(Z \le 1) - 1$

$$≈ 2 × 0,8413 - 1 = 0,6826$$

$$P(Z \geqslant -0.74) \underset{ii.}{=} 1 - P(Z \leqslant -0.74) \underset{iii.}{=} 1 - \left(1 - P(Z \leqslant 0.74)\right) = P(Z \leqslant 0.74) \simeq 0.7704$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(Z \geqslant -0.74) \underset{ii.}{=} 1 - P(Z \leqslant -0.74) \underset{iii.}{=} 1 - \left(1 - P(Z \leqslant 0.74)\right) = P(Z \leqslant 0.74) \simeq 0.7704$$

$$P(Z=0.85) =$$

$$P(Z \ge 1, 27) = 1 - P(Z \le 1, 27) = 1 - \Phi(1, 27) \simeq 1 - 0,8980 = 0,102$$

$$P(-1 \le Z \le 1)$$
= $P(Z \le 1) - P(Z \le -1)$
= $P(Z \le 1) - (1 - P(Z \le 1))$
= $2P(Z \le 1) - 1$

$$≈ 2 × 0,8413 - 1 = 0,6826$$

$$P(Z \geqslant -0.74) \underset{ii.}{=} 1 - P(Z \leqslant -0.74) \underset{iii.}{=} 1 - \left(1 - P(Z \leqslant 0.74)\right) = P(Z \leqslant 0.74) \simeq 0.7704$$

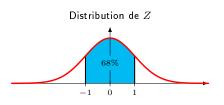
$$P(Z=0,85)=0$$

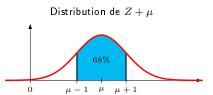
3. La loi normale $\mathcal{N}(\mu, \sigma)$.

Soit Z une variable aléatoire suivant une loi normale centrée réduite.

3. La loi normale $\mathcal{N}(\mu, \sigma)$.

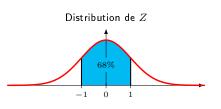
Soit Z une variable aléatoire suivant une loi normale centrée réduite.

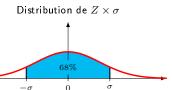


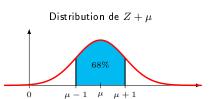


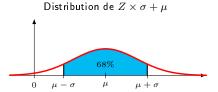
3. La loi normale $\mathcal{N}(\mu, \sigma)$.

Soit Z une variable aléatoire suivant une loi normale centrée réduite.









Théorème

Soient Z une variable aléatoire normale centrée et réduite, et σ un nombre réel strictement positif. La variable aléatoire $X=Z imes\sigma+\mu$ suit la loi de densité (distribution) :

$$f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(\frac{t-\mu}{\sigma}\right)^2}$$

Son espérance $E(X)=\mu$ et son écart-type $\sigma_X=\sigma$.

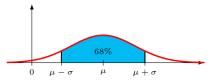
Définition:

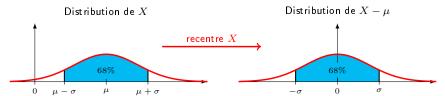
Carl Friedrich Gauss

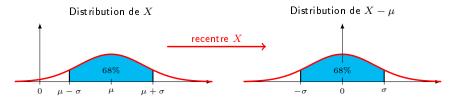
Etant donné un nombre réel σ strictement positif et un réel μ . La **loi normale** de centre μ et d'écart-type σ , notée $\mathcal{N}(\mu,\,\sigma)$ est la loi dont la densité de probabilité est

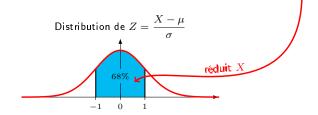
$$f \colon \mathbb{R} \longrightarrow [0; +\infty]$$

$$t \longmapsto \frac{1}{\sigma\sqrt{2\pi}} e^{\left(\frac{t-\mu}{\sigma}\right)^2}$$

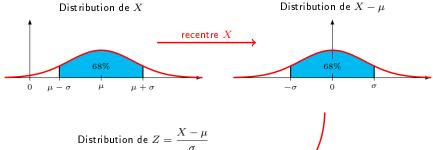


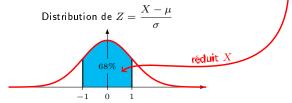






Etant donné une variable aléatoire X suivant une loi $\mathcal{N}(\mu,\,\sigma)$:





Théorème

Si la variable aléatoire X suit une loi normale $\mathcal{N}(\mu,\,\sigma)$, alors la variable aléatoire $Z=\frac{X-\mu}{\sigma}$ suit une loi normale centrée réduite.

Exemple nº 7 : X suit une loi normale $\mathcal{N}(5,\,2)$.

Exemple nº 7 : X suit une loi normale $\mathcal{N}(5,\,2)$.

$$P(X \leqslant 8) =$$

Exemple nº 7 : X suit une loi normale $\mathcal{N}(5,\,2)$.

$$P(X \leqslant 8) = P\left(\frac{X-5}{2} \leqslant \frac{8-5}{2}\right) =$$

Exemple no 7 : X suit une loi normale $\mathcal{N}(5, 2)$.

$$P(X \le 8) = P\left(\frac{X-5}{2} \le \frac{8-5}{2}\right) = P(Z \le 1, 5) =$$

Exemple no 7 : X suit une loi normale $\mathcal{N}(5, 2)$.

$$P(X \le 8) = P\left(\frac{X - 5}{2} \le \frac{8 - 5}{2}\right) = P(Z \le 1, 5) = \Phi(1, 5) \simeq 0,9332$$
 où $Z \sim \mathcal{N}(0, 1)$.

Exemple no 7: X suit une loi normale $\mathcal{N}(5, 2)$.

$$P(X \leqslant 8) = P\left(\frac{X - 5}{2} \leqslant \frac{8 - 5}{2}\right) = P(Z \leqslant 1, 5) = \Phi(1, 5) \simeq 0,9332 \text{ où } Z \sim \mathcal{N}(0, 1).$$

Théorème

Si les variables aléatoires X_1 et X_2 suivent des lois normales indépendantes alors :

- $X_1 + X_2$ suit une loi normale;
- pour tout réel a, la variable aléatoire aX_1 suit une loi normale.

- - E(X + Y) =

- - E(X+Y) = E(X) + E(Y) =

- - E(X + Y) = E(X) + E(Y) = 2 + 5 = 7

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

•
$$E(X + Y) = E(X) + E(Y) = 2 + 5 = 7$$

•
$$V(X+Y) =$$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

•
$$E(X + Y) = E(X) + E(Y) = 2 + 5 = 7$$

•
$$V(X + Y) =$$

 $V(X) + V(Y) =$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

•
$$E(X + Y) = E(X) + E(Y) = 2 + 5 = 7$$

•
$$V(X + Y) =$$

 $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

•
$$E(X + Y) = E(X) + E(Y) = 2 + 5 = 7$$

•
$$V(X + Y) =$$

 $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

 $\operatorname{car} \, X \, \operatorname{et} \, Y \, \operatorname{so} \operatorname{nt}$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

• La loi de X+Y:

•
$$E(X+Y) = E(X) + E(Y) = 2 + 5 = 7$$
 • $\sigma_{X+Y} =$

$$\bullet$$
 $\sigma_{X+Y} =$

•
$$V(X+Y) = V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$$

car X et Y sont indépendantes

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

•
$$E(X+Y) = E(X) + E(Y) = 2 + 5 = 7$$
 • $\sigma_{X+Y} = \sqrt{4} = 2$

•
$$V(X+Y) = V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$$

 $\operatorname{car} \ X \ \operatorname{et} \ Y \ \operatorname{sont} \ \operatorname{indépendantes}$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3}),\ Y$ suit une loi normale $\mathcal{N}(5,1),\ \text{et }X$ et Ysont indépendantes.

• La loi de X+Y:

•
$$E(X+Y) = E(X) + E(Y) = 2 + 5 = 7$$
 • $\sigma_{X+Y} = \sqrt{4} = 2$

$$\bullet \ \sigma_{X+Y} = \sqrt{4} = 2$$

•
$$V(X+Y) = V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$$

 \bullet (X+Y) suit une loi normale

car X et Y sont indépendantes

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3}),\ Y$ suit une loi normale $\mathcal{N}(5,1),\ \text{et }X$ et Ysont indépendantes.

• La loi de X+Y:

•
$$E(X+Y) = E(X) + E(Y) = 2 + 5 = 7$$
 • $\sigma_{X+Y} = \sqrt{4} = 2$

$$\bullet \ \sigma_{X+Y} = \sqrt{4} = 2$$

•
$$V(X+Y) = V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3}),\ Y$ suit une loi normale $\mathcal{N}(5,1),\ \text{et }X$ et Ysont indépendantes.

• La loi de X+Y:

•
$$E(X+Y) = E(X) + E(Y) = 2 + 5 = 7$$
 • $\sigma_{X+Y} = \sqrt{4} = 2$

•
$$V(X+Y) = V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$$

car X et Y sont indépendantes

•
$$\sigma_{X+Y} = \sqrt{4} = 2$$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

 $\mathsf{car}\; X\; \mathsf{et}\; Y\; \mathsf{sont}$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3}),\ Y$ suit une loi normale $\mathcal{N}(5,1),\ \text{et }X$ et Ysont indépendantes.

- La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$
 - V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

car X et Y sont indépendantes

- (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

Exemple n° 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

- La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$
 - V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

car X et Y sont indépendantes

- (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

- - E(2X 3Y) =

Exemple n° 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

- lacksquare La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$
 - V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

car X et Y sont indépendantes

- (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

- - E(2X 3Y) = E(2X) + E(-3Y) =

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3}),\ Y$ suit une loi normale $\mathcal{N}(5,1),\ \text{et }X$ et Ysont indépendantes.

- lacksquare La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$

• V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

- - $E(2X 3Y) = E(2X) + E(-3Y) = 2 \times 2 + (-3) \times 5 = -11$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

- - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$
 - C(1) = 2 + 6 = 1
 - $V(X+Y) = V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

car X et Y sont indépendantes

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

 $\operatorname{car} X$ et Y sont $\operatorname{ind\'ependantes}$

- ullet La loi de 2X-3Y
 - $E(2X 3Y) = E(2X) + E(-3Y) = 2 \times 2 + (-3) \times 5 = -11$
 - V(2X 3Y) =

Exemple nº 8 : X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Ysont indépendantes.

- lacksquare La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$

• V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

- - $E(2X 3Y) = E(2X) + E(-3Y) = 2 \times 2 + (-3) \times 5 = -11$
 - $V(2X 3Y) = (2^2)V(X) + (-3)^2V(Y) =$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

- lacksquare La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$

• V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

- extstyle 2 La loi de 2X 3Y :
 - $E(2X 3Y) = E(2X) + E(-3Y) = 2 \times 2 + (-3) \times 5 = -11$
 - $V(2X-3Y)=(2^2)V(X)+(-3)^2V(Y)=4\times 3+9\times 1=21$ car X et Y sont indépendantes

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

- lacksquare La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$

• V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

- extstyle 2 La loi de 2X 3Y :
 - $E(2X 3Y) = E(2X) + E(-3Y) = 2 \times 2 + (-3) \times 5 = -11$
 - $V(2X-3Y)=(2^2)V(X)+(-3)^2V(Y)=4\times 3+9\times 1=21$ car X et Y sont indépendantes
 - $\sigma_{2X-3Y} =$

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

- lacksquare La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$

• V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

- 2 La loi de 2X 3Y:
 - $E(2X 3Y) = E(2X) + E(-3Y) = 2 \times 2 + (-3) \times 5 = -11$
 - $V(2X-3Y)=(2^2)V(X)+(-3)^2V(Y)=4\times 3+9\times 1=21$ car X et Y sont indépendantes
 - $\sigma_{2X-3Y} = \sqrt{21}$
 - (2X 3Y) suit une loi normale

Exemple nº 8: X suit une loi normale $\mathcal{N}(2,\sqrt{3})$, Y suit une loi normale $\mathcal{N}(5,1)$, et X et Y sont indépendantes.

- lacksquare La loi de X+Y:
 - E(X+Y) = E(X) + E(Y) = 2 + 5 = 7 $\sigma_{X+Y} = \sqrt{4} = 2$

• V(X + Y) = $V(X) + V(Y) = (\sqrt{3})^2 + 1^2 = 4$

• (X+Y) suit une loi normale $\mathcal{N}(7, 2)$

car X et Y sont indépendantes

- 2 La loi de 2X 3Y:
 - $E(2X 3Y) = E(2X) + E(-3Y) = 2 \times 2 + (-3) \times 5 = -11$
 - $V(2X-3Y)=(2^2)V(X)+(-3)^2V(Y)=4\times 3+9\times 1=21$ car X et Y sont indépendantes
 - $\sigma_{2X-3Y} = \sqrt{21}$
 - (2X-3Y) suit une loi normale $\mathcal{N}(-11, \sqrt{21})$ car X et Y sont indépendantes

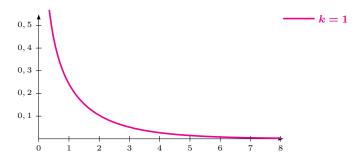
4. Loi du χ^2

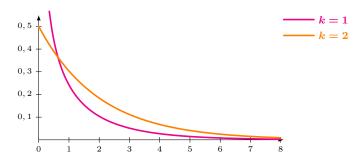
Définition:

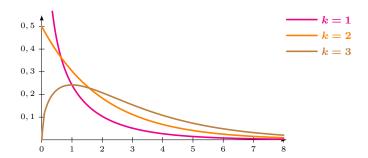
Soient k variables aléatoires indépendantes X_i suivant une loi normale d'espérance μ_i et écart-type σ_i . Par définition la variable aléatoire

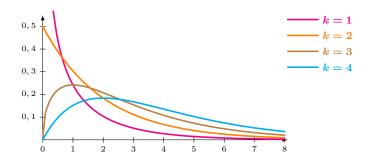
$$Y = \sum_{i=1}^{k} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2$$

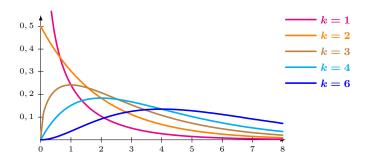
suit une loi du χ^2 à k degrés de liberté.

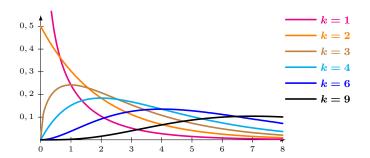


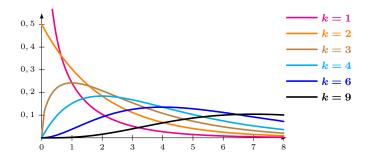












En pratique, lorsque $k\geqslant 100$, on approche la loi du χ^2 à k degré de liberté par la loi normale $\mathcal{N}(k,\sqrt{2k})$.

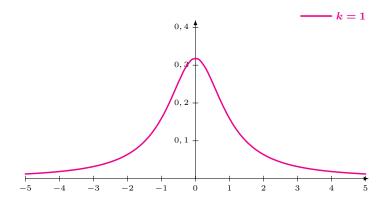
5. Loi de Student

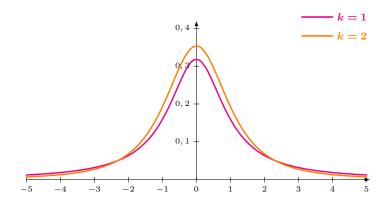
Définition:

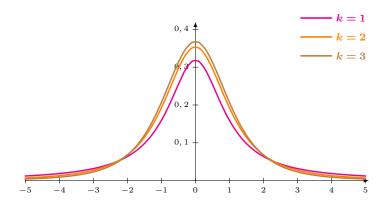
Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ^2 à k degrés de liberté. Par définition la variable

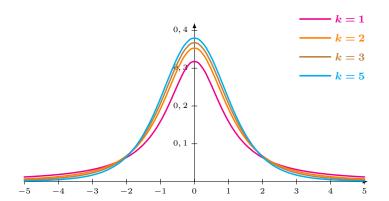
$$T = \frac{Z}{\sqrt{U/k}}$$

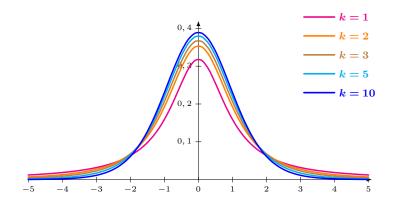
suit une loi de Student à k degrés de liberté.

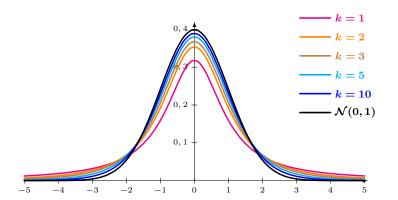


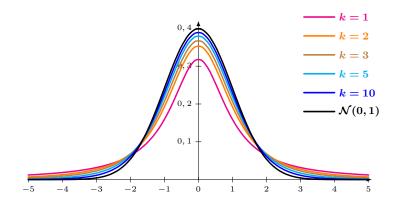




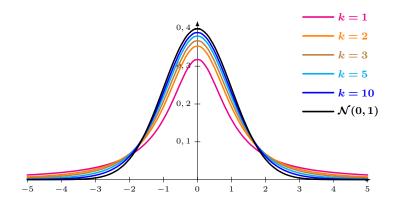






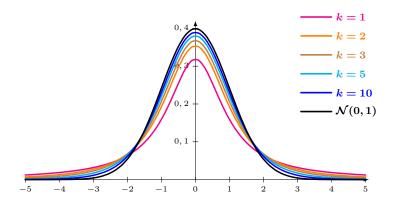


- \bullet Son espérance vaut 0 et n'est définie que pour $k\geqslant 2\,;$
- ullet Sa variance vaut $\dfrac{k}{k-2}$ et n'est définie que pour $k\geqslant 3$.



- ullet Son espérance vaut 0 et n'est définie que pour $k\geqslant 2$;
- Sa variance vaut $\frac{k}{k-2}$ et n'est définie que pour $k\geqslant 3$.

Lorsque k tend vers $+\infty$ la loi de Student tend vers la loi normale centrée réduite.



- Son espérance vaut 0 et n'est définie que pour $k \geqslant 2$;
- \bullet Sa variance vaut $\frac{k}{k-2}$ et n'est définie que pour $k\geqslant 3.$

Lorsque k tend vers $+\infty$ la loi de Student tend vers la loi normale centrée réduite.

Remarque : En pratique, lorsque $k \geqslant 30$, on approche la loi de Student à k degrés de liberté par la loi normale centrée réduite.

William Sealy Gosset

connu sous le pseudonyme **Student** est un statisticien anglais (1876 – 1937) qui inventa la distribution ne portant pas son nom.

Il était un employé de la brasserie Guinness qui lui demanda d'utiliser un pseudonyme pour diverses raisons. Peut-être prétendait-il que la qualité de leurs produits était improbable...