2025 - 2026

Ondes.
N Fiche n°1 &

I. Rappels de semestre 1.

On a représenter la sinusoide définie par f(t) = A + Asin(wt + ¢)

A

—6 T
8+
—10 -
~11,291 1
—12 +
—14 +
+ + + + + + + + + t
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I ga période est T = 0,3 I gon amplitude est A = 2
1 . 2
I ga fréquence est f = T = 03 ~ 3,33 Hz I g pulsation est w = 2w f = T ~ 20, 94rad/s

" Avec ses parameétres, expression de f est f(t) = —10 + 2sin(20, 94t 4 ¢)

=" Calcule son déphasage ¢ : f(0) = —11,291 = —10 + 2sin(yp)

—11,291 — (—10 —1,291
Donc, sin(p) = ’ ( ) = ’
2 2
. —1,291 . —1,291
Et, ¢ = arcsin B ~ —0,70 ou ¢ = ™ — arcsin s ~ 3,84

La fonction étant décroissante au voisinage de 0 le déphasage est ¢ = 3, 84 rad.

Mais, 3,843 > m donc ce n’est pas une mesure principale : ¢ ~ 3,84 — 2w ~ —2,44

" L’expression de f est f(t) = —10 + 2sin(20, 94t — 2,44)



II. Concept d’ondes.

Une variation de grandeur physique qui se propage dans un espace suite & une perturbation constitue une onde.
La grandeur physique qui varie est appelée grandeur caractéristique de cette onde. Pour le son, cette grandeur
est la pression, et pour un champ électromagnétique, les deux grandeurs qui varient sont le champ électrique
et le champ magnétique.

1. Perte d’énergie : amortissement.

C’est la perte d’énergie due a 'interaction de ’onde avec le milieu de propagation est appelé 'Tamortissement
ou 'atténuation.

e Cause : Le milieu ('air, I’eau, un céble, etc.) convertit une partie de ’énergie de 'onde en une autre
forme, souvent de la chaleur.

e Conséquence : L’amplitude de 'onde diminue souvent de maniére exponentielle avec la distance dans
un milieu homogéne qui la sépare de sa source.

2. La divergence Géométrique.

C’est la perte d’intensité surfacique due a la répartition de ’énergie sur un front d’onde de plus en plus
grand, méme dans un milieu non dissipatif. On parle de dispersion énergétique. Cette perte n’est pas due a
une absorption de I’énergie par le milieu dans lequel 'onde se propage mais & la forme de son front d’onde.

e Ondes Sphériques (Source ponctuelle) :

L’énergie totale (Fiot) se répartit sur la surface
de la sphére (47r?). L'intensité I (puissance par
unité de surface) diminue en 1/72 :

1 1
Io<—2 = Ax-
T r

ol A est amplitude de ’onde et r la distance.

Démonstration

L’intensité I d’une onde est définie comme 1’énergie par unité de temps et par unité de surface (soit

P 1
la puissance par unité de surface) : I = —. Donc, S = 47r? donc I = xX —.
S 4mtr?2 2

L’intensité I d'une onde est proportionnelle au carré de son amplitude donc A & —
r

e Ondes cylindriques :
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L’énergie totale (Fiot) se répartit sur la surface
de la sphére (47r?). L’intensité I (puissance par
unité de surface) diminue en 1/7 :

1 1
Ix- == Ax-—

' vr

ol A est Pamplitude de l'onde et r la distance.

e Ondes Planes (Idéales) : Elles ne subissent aucune divergence géométrique. Si le milieu n’amortit
pas, 'amplitude reste constante. C’est le seul cas idéalisé d’une propagation sans affaiblissement (dans
un milieu sans pertes).

Ondes planes

ST )))))))) ))))

III. Onde progressive non-amortie et non-dispersive.

o

Deﬁnltlon:
Une onde progressive est le phénoméne de propagation d’une perturbation (ou déformation) dans un
milieu, avec transport d’énergie mais sans transport global de matiére.

Caractéristiques :

e Propagation de la perturbation : La déformation se déplace dans I'espace et le temps.
e Transport d’énergie : [’onde transmet de I’énergie d’un point & un autre.

e Absence de transport de matiére : Le milieu lui-méme (les molécules, les particules) ne se dé-
place pas globalement avec ’onde. Chaque élément du milieu oscille localement autour de sa position
d’équilibre. Par exemple, une vague fait monter et descendre un bouchon, mais ne le transporte pas
durablement vers le rivage.

e Célérité (c) : Clest la vitesse a laquelle la perturbation se propage dans le milieu. Elle dépend des
propriétés du milieu (densité, température, tension, etc.).

Une onde progressive u(x,t) représente la caractéristique physique qui ondule & 'instant ¢ a la position z. On
suppose que cette onde se déplace dans le sens des x croissants.

La forme temporelle de 'onde est définie par une fonction f : T : période temporelle
‘ -+ t
0 T

Ce qui signifie que sur [0, 7], u(0,t) = f(t). Cette forme va se répéter dans
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e le temps :

T

L’onde se déplace a la vitesse ¢, donc pour se déplacer de 0 & x, elle met — secondes. A un instant ¢ donné,
c

la valeur de ’onde u(z,t) en un point = a est la méme que la valeur de 'onde au point z = 0 a U'instant

x
t — —. Autrement dit, I’onde au point z & l'instant ¢ est la méme que 'onde qui était au point x = 0 &
c

T T
I'instant t—g. Elle est décalée dans le temps de 1 s’en suit que: u(z,t) = u (0, t— ) =f <t — >
c c c c

-\@’-Propriété

La forme générale d'une onde progressive, non-amortie et non-dispersive est
55 . .

= u(z,t)=f (t — 7> lorsqu’elle se propage suivant I’axe des x croissants.
c

z
= u(z,t)=f (t 9F 7> lorsqu’elle se propage suivant 'axe des x décroissants.
c

%5
Le temps de propagation — est appelé le retard temporel
c

e l’espace : ! |
| |
| — |

1

o -
>

Déﬁnition:

| La période spatiale, notée A, est appelée la longueur d’onde.
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°Q* Propriété

La forme générale d’'une onde progressive, non-amortie et non-dispersive est

5" y(xz,t) = g(x — ct) lorsqu’elle se propage suivant ’axe des x croissants.

5" y(z,t) = g(a + ct) lorsqu’elle se propage suivant 1’axe des x décroissants.

1. Ondes harmoniques progressives non atténuées.

Considérons la forme d’onde f(z)

= Asin(wz + ¢) alors :

= u(x,t)zf(t—%)zAsin{ (t—>+<p] :Asin[wt——{—(p}

lorsqu’elle se propage suivant ’axe des = croissants.

= u(a;,t):f(t—i—%) = Asin [w <t+i> —i—cp] = Asin [wt—l——i—go}

lorsqu’elle se propage suivant l’axe des x décroissants.

Déﬁnition:

w
| — est appelé le nombre d’onde.
c

Jdd Générateur de Son Sinusoidal avec Visualisation

Démarrer le Son

— 411 Hz
(A): 0.45

-—

Fréquence (fen Hz) :

Déphasage (@ en rad) : 0.82 rad

Amplitude
1(t) = 0.45 Sin(2582.39t +0.82) (w en rad/s, @ en rad)

NANNNNNNL
MAVELVAAVEVAVEAVAAVAAVE

8

Visualisation de I'Onde f(z) = A - sin (wt — & + ¢)
Amplitude (4): 0.9

Pulsation (w): 1.8

Déphasage (¢): -3.14

[ 2
(entre —m et 7)

e

NN\ N\

Jd Générateur de Son Sinusoidal avec Visualisation

+040

8

-0.40

Démarrer le Son

316 Hz

(fen Hz) :

plitude (A) : 0.40

Déphasage (¢ enrad) : @ 0.00 rad

Vitesse du son (ven m/s) : cr—————r 528 mis
Signal en fonction du Temps t

Amplitude

f(t) = 0.40 sin(1985.49t ) (w en rad/s,  en rad)

ANVANANANYAWYA

VEVACLVACAAV AVE

Signal en fonction de la Position x (Echelle fixe)

Ampitude

f(x) = 0.40 sin(3.76x ) (k en rad/m, A = 1.67 m)

P. DROUOT
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https://www.pdrouot.fr/GC/Accoustique/html/Analyse spectrale d'un son_simple.html
https://www.pdrouot.fr/GC/Accoustique/html/Onde_progressive.html
https://www.pdrouot.fr/GC/Accoustique/html/Analyse spectrale d'un son_spatial.html

J3 Les ondes planes progressives harmoniques

Plan Temporel-Spatial (t, x)

Démarrer le Son
Fréquence (fen Hz) :  emmmmmng) 251 Hz

002s

Amplitude (A) | enm——————— 0.63
Déphasage (penrad): @ 0.00 rad 002s
Vitesse du son (venmis) :  eo— 600 M/s 0ots

80ms

signal en fonction du Temps t
40ms

Ampitude
f(t) = 0.63 5in(1577.08t ) (w en radis, @ en rad)

(]
osnomm 136M 272m 408m 544m 680 m

(t, x) = 0.63 sin(1577.08t - 2.63x )

signal en fonction de la Position x
Ampitude
f(x) = 0.63 sin(0 - 2.63x) (k en radim, A =2.39 m)

(0 ns, 1.69 m) = 0.61

2. Ondes stationnaire non atténuées.

Contrairement a I'onde progressive qui se déplace en transportant de I’énergie dans une direction donnée, I'onde
stationnaire semble immobile et ne présente pas de propagation d’énergie nette.

Exemple n°1 : Un exemple concret est la vibration d’une corde d’instrument de musique (guitare, violon,
piano) lorsqu’elle est jouée.

e Mécanisme : Lorsqu’on pince ou frotte la corde, cela crée une onde progressive qui se déplace de I’endroit
ol elle a été générée vers les extrémités de la corde.

y1(x,t) = Asin(wt — kx)

e Réflexion : Ces extrémités sont généralement fixes (par les chevalets et les mécaniques). Lorsque l'onde
progressive atteint I'extrémité fixe, elle est réfléchie et revient en sens inverse.

ya(z,t) = Asin(wt + kx)

e Superposition : L’onde progressive incidente et 'onde progressive réflechie (appelée onde régressive) se
superposent. Si elles ont la méme fréquence et la méme amplitude et se propagent dans des directions
opposées, leur interférence produit une onde stationnaire.

(x,t) + yo(z, 1)

y(z,t) = 1
Alsin(wt — kz) + sin(wt + kz)]

En utilisant I'identité trigonométrique sin p + sin g = 2sin (4’?) cos (251), on retrouve :

y(x,t) = 2Asin(kz) cos(wt)
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https://www.pdrouot.fr/GC/Accoustique/html/Analyse spectrale 3D.html

—2
% REMARQUE
C’est la structure mathématique de cette séparation des variables (espace et temps) qui est la signature
d’une onde stationnaire.

Dans I'onde stationnaire, il y a oscillation, mais pas de déplacement de la forme d’onde :

1. L’amplitude en « est Statique :

I Cette amplitude est fixe dans le temps. Par exemple, le point situé & zpeuq aura toujours une am-
plitude de zéro, quelle que soit la valeur de ¢t. Ce point ne vibre jamais, il n’y a pas de transport
d’énergie & travers lui.

I Inversement, le point situé & Tyentre aura toujours 'amplitude maximale 2A.

=" La dépendance en z détermine un motif fixe (noeuds et ventres) qui ne bouge jamais.
2. La phase est uniforme, le terme cos(wt) module la vibration pour tous les points  simultanément :
=" Pour t = 0, cos(wt) = 1. L’onde stationnaire prend sa forme maximale : y(z,0) = 2Asin(kz) :

y Forme a cos(wt) =1

Ventre
2A8in(kx) +----- o~ =~~~

Fixation

N Fixation

—2Asin(kz) +-----"——— - - - - - - - T—e—7 - -
Ventre

Forme & cos(wt) = —1

Pour ¢t = T/2, cos(wt) = —1. L’onde stationnaire y(z,7/2) = —2Asin(kz) est en opposition de
phase.

X ™
I=" A un autre instant, disons ¢t = T'/4, alors wt = 5 et cos(wt) = 0. L’onde est plate (y(z,T/4) = 0)

pour tous les z en méme temps :

Y Forme a t = T/4 (amplitude nulle partout)

Ventre Ventre

Fixation ® . ® Q
0 M No™— Fixation

=" Tous les points vibrent en phase. Il n’y a pas de décalage temporel (retard z/c) entre la vibration
d’un point z; et d’un point xs.

Pour obtenir les 3 nceuds (la deuxiéme harmonique) :
I Jocalisez le milieu : c’est généralement au niveau de la 12¢ frette (I'octave) ;

I touchez légérement : posez trés délicatement le doigt sur la corde juste au-dessus du fil de la 12¢ frette ;
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I pincez la corde : frapper la corde (avec un médiator ou le doigt) ;

I relachez le doigt : retirez immédiatement le doigt aprés avoir pincé la corde pour permettre & 'onde
stationnaire de s’établir.

REMARQUE

Longueur Nombre de Nombre de
d’onde A Ventres Neeuds

1 2L 1 2

L 2 3

3 2L/3 3 4

Harmonique n

n 2L/n n n+1

g Générateur d'une fondamentale a 440Hz et de ses 5 harmoniques 4

Réinitialiser toutes les amplitudes A, a 0

+3.00 +3.00
Démarrer le Signal a 440Hz Démarrer le Signal 4 880Hz
Ay [ ] 0.28 o Ay @ 066 o
000ms 18.18ms 3636 ms 5455ms 727 o s V1848 6.56 s 5 s 2.
Sy(t) = 0.28sin(?) Sy(t) = 0.66sin(?)
-3.00 -3.00
+3.00 +3.00
Démarrer le Signal & 1320Hz Démarrer le Signal a 1760Hz
Ag [ ] 0.00 o Ay [ ] 0.00 o
000ms 18.18ms 3636 ms 5455ms 727 000ms 18.18ms 3636 ms 5455ms 727
Sa(t) = 0.00sin(?) Sy(t) = 0.00sin(?)
-3.00 -3.00
+3.00 +3.00
Démarrer le Signal 4 2200Hz Démarrer le Signal a 2640Hz
A5 [ ] 0.00 0 Ag [ ] 0.00 0
000ms 18.18ms 36.36 ms 5455ms 727 000ms 18.18ms 36.36 ms 5455ms 727
Ss(t) = 0.00sin(?) Se(t) = 0.005in(?)
3.00 3.00
+3.00 +3.00
Démarrer la SOMME Démarrer ['Onde pure
(Harmoniques)
0 Cocher pour choisir votre onde : o 11 ml_‘i—\ mur—\ ﬁuf_\ |
000Ms 188 ms 3646 ms 5495 ms 72! Signal Carré (Son API) 0.00ms Hﬂ ms’ Hﬁms h'g.’)ms H
() Signal Triangulaire (Son
300 API) 300

) Dents de Scie (Son API)
Signal Trapézoidal

o 0.50

>0

Diagramme Spectral des 6 premiéres harmoniques.

Les hauteurs représentent les coefficients de Fourier 4, des harmoniques signés (issus des sliders).

9efilent A

440 Hz 880 Hz 1320 Hz 1760 Hz 2200 Hz 2640 Hz
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https://www.pdrouot.fr/GC/Accoustique/html/Analyse spectrale harmonique_440Hz.html

IV. L’équation d’onde.

@ Rappel:

x2
fla+z) & f(a) +af'(a) + 2 "(a)

Exemple n° 2 : Le développement limité du cosinus en O :

DL x?
5" Le formule s’écrit : f(0+z) = f(0) + = f'(0) + ?f”(O)
B f(z) = cos(x) , /() = — sin(z), et ["(x) = — cos(x)

I f(x) =~ cos(0) — x sin(0) — C822005(0) =1- 3322

>
+

2
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S’:!'dr'ia' "’:‘l‘ osmo e o 0.9 000mes s 0 o @ s ot s o 0 0 e
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..:.F.. o .v .t 8.0 S esMes s 8 0 .0 Comes s B 0 0 e
‘::‘. N 1 0 98 00MEs e e 0 " e0mNee e 0 e

i

xl(O) = :L'Q(O) =-2 T (0) = —.TQ(O) = -2
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https://youtu.be/TDfAu9P74aQ?si=sHwlwWSg0NGzHZhe
https://youtu.be/c2QB2Z0j7UU?si=PhXPOv9Zx_3nyzMY
https://youtu.be/4azWF2HKMDk?si=5IQvJLfAaBVjLv-5
https://youtu.be/tte5_G-4AuA?si=I_5KWdO9gbk4ensr

Rappel:

La constante de raideur est définie par la Loi de Hooke (pour les déformations faibles) qui relie la force ? de
rappel exercée par le ressort a son allongement ou sa compression (Az) par rapport a sa position d’équilibre :

= —kA, i ou k est la constante de raideur, A, son déplacement par rapport & sa position d’équilibre, et
1 un vecteur unitaire orienté selon la direction du déplacement.

e Position d’equilibre (Az = 0)

e Position étirée : . F = —kAT7
L AAAAAAAMAMAAMA—
L? ?

Pour mettre en évidence la structure mathématique du phénomeéne ondulatoire, nous allons étudier le systéme
constitué d’une chaine infinie d’oscillateurs identiques composés de masses m et de ressorts de raideurs k& montés
en série :

3>
>

Ap(t) A (t

n—1 n n—+1

En notant a la longueur de chaque ressort a I'équilibre, et A,, ’écart de la masse numéro n par rapport a sa
position d’équilibre, on peut établir ’équation du mouvement de la masse numéro n :

MAL(E) = —k[ An(t) = An_1 ()] + k[ Ansi(t) — An(t) ]

Ressort de gauche Ressort de droite

Passons du discret au continue :

e Hypothése : On considére que le mouvement de la chaine n’est pas seulement un ensemble de points
discrets, mais qu’il peut étre décrit par une seule fonction X (z,1t).

e La fonction X (z,t) représente le déplacement de la matiére non seulement au niveau des masses (positions
x, = na), mais potentiellement en tout point x de la droite.

¢ Changement de notation :

Notation Discréte Signification Notation continue
Ay_1(t) Déplacement de la masse n — 1 X (x —a,t)
Ap(t) Déplacement de la masse n (masse centrale) X (xz,t)
Apt1(t) Déplacement de la masse n + 1 X (x + a,t)

L’espace est maintenant une variable continue x, échantillonnée aux positions des masses x —a, x, et T+ a.

La fonction X (z,t) est le déplacement d’une masse située a la position d’équilibre x au cours du temps ¢.
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Puisque la position X dépend maintenant de deux variables (z et t), la dérivée par rapport au temps doit devenir
une dérivée partielle :

2

X
L’équation du mouvement devient alors : maatz(:c, t) = —k[X(z,t)—X(z—a,t)| +k[X(z+a,t)— X (z,t)]

On a supposé que a est "petit", ce qui permet d’effectuer les développements limites suivants :

DL 0X a?0%’°X
X(.’E—(I7t) %X(x,t)—a%—i—aw
0X a?0’X
Gréace a ces développements, on peut exprimer X (x — a,t) et X (z + a,t) en fonction de X (z,t) :
?X 0X a?0’X 0X a?0?’X
—(z,t) = -k | X(z,t) — | X(z,t)) —a— + ——— k| X(xt — 4+ ——— | —X(z,t
m2 2 1) @0 - (X0 - ol + TG )| 40 | (X +aG + $ 55 ) -X(@o
| X(xta,t) X (z+a,t)
[ 90X a?0?°X 0X  a?0*’X , 0% X
=—kla— 5| +tkla—+-—5| =
| Oz 2 0x? or 2 0z ox?

Cette équation peut étre réécrite sous la forme :

ox2 2 ot2 m

[a?x 1 92X J _ [ka?
— avec c = _—

Cette équation aux dérivées partielles est ’équation d’onde ou équation de d’Alembert. Cette équation relie
la, dérivée seconde par rapport au temps t et la dérivée seconde par rapport & la variable d’espace z. Le fait
que la fonction X vérifie cette équation signifie que X posséde une structure d’onde. En d’autres termes, la
perturbation X se propagera dans I’espace au cours du temps, et variera en fonction du temps en tout point fixe
de I'espace. Il en va de méme pour la force, la vitesse, I’accélération : toutes ces fonctions, qui sont reliées & X
ou & ses dérivées, ont une structure d’onde. Le paramétre ¢’ est homogéne & une vitesse : c’est la célérité de
I'onde.

1. Transformation vers le modéle continu (macroscopique).

Modéle Discret
(Chaine
d’oscillateurs)

Propriété continue

(Milieu réel) Symbole Role Physique

Représente 'inertie du milieu (sa

m/a Masse volumique (ou densité L. R .
/ que ( ) P résistance a l'accélération).

.. : la fi 1
Module d’élasticité (ou de Représente la force de rappe

Ka rigidite) E du milieu (sa résistance a la
& déformation).
. : , Ka? (Ka)-a Ka E
En substituant ces relations dans la formule de célérité : ¢ = = = = . /=
m ~ \(mjay-a \m/a_\p
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2. Application a ’onde sonore dans un gaz (l’air).

Pour une onde sonore se propageant dans un gaz, comme [’air, la célérité est donnée par la formule de Laplace :

[~ P,
Cair = % donc F = ~vFy

e p est la masse volumique du gaz (correspondant & m/a).

e 7 est 'indice adiabatique et Py la pression statique (ou pression a I’équilibre) du gaz avant le passage
de I'onde sonore.

e Py est le module de compressibilité adiabatique, qui représente le terme d’élasticité (correspondant a
Ka).

La célérité du son est déterminée par les propriétés macroscopiques du milieu & 1’état d’équilibre. C’est la pression
de Tair au repos Py qui détermine, avec la masse volumique p et le coefficient adiabatique ~, la "raideur" du
gaz face & une petite compression, et donc la vitesse & laquelle cette perturbation se propage.

L’indice adiabatique -, aussi noté x, dépend du nombre de degrés de liberté de la molécule de gaz (sa nature :
monoatomique, diatomique, etc.).

Type de Gaz Exemple Valeur dzhf‘;orique
Monoatomique Hélium (He), Néon (Ne) 5/3 ~1,67
Diatomique Air (Ny a 78% et O a 21%), Hydrogeéne (Hs) 7/5 =1,40
Polyatomique Méthane (C'Hy), Vapeur d’eau (H20) ~ 1,30

3. Formulation a partir de la température.

La loi des gaz parfaits (gaz a 1’équilibre) se formule mathématiquement de la maniére suivante : PV = nRT ou

e P est la pression en Pascal (P,) : Force exercée par unité de surface par les molécules sur les parois du
conteneur.

e V est le volume en m?, et 7' la température en Kelvin.

e 1 est le nombre de mols, c’est une quantité de matiére : 1 mole = 6,022 x 1023 unités.
Ce nombre gigantesque est appelé la constante d’Avogadro.

e Constante des gaz parfaits (R) : R~ 8,314 J -mol~ ! . K—1

La Masse Molaire est la masse d’une mole de n’importe quelle substance. Elle est numériquement égale & la
masse atomique ou moléculaire relative de cette substance (exprimée en grammes, mais avec I'unité g/mol).

Substance Masse Moléculaire (u) | Masse Molaire (M)
Hydrogéne (H) ~ 1,01 u ~ 1,01 g/mol
Oxygene (0) ~ 16,00 u ~ 16,00 g/mol
Carbone (C) ~ 12,01 u ~ 12,01 g/mol
Azote (N) ~ 14,01 u ~ 14,01 g/mol
Eau (H20) ~ 18,01 u ~ 18,01 g/mol
Air (Ng, O9) ~ 28,97 u A~ 28,97 g/mol
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é‘—\IP REMARQUE

| Meaw =2 x M(H)+1x M(O) =~ (2 x 1,01) + 16,00 = 18,02 g/mol

asse du ga.
D’aprés la loi des gaz parfaits PV = nRT ou le nombre de mols n = m—ugz
Masse molaire

m
Ainsi, RV = (77 ) RT.
insi, PyV U R
m \% RT
Comme p = v ona:m=pV et BV = (?\4) RT donc Py = LM
pRT

P Y
c:,/udoncc: M donc | ¢ = ﬂ
p p M

Exemple n° 3 : Calculons la vitesse du son dans 'air & 20° :

e La température absolue T'= 20°C 4 273,15 = 293,15 K
e Indice adiabatique de lair (v) : v~ 1,40

e La masse molaire de I'air M ~ 0,02897 kg - mol~!

1,40 x 8,314 J -mol~ ! - K~! x 293,15 K
c= ~ 343,5m/s

0,02897 kg - mol~?!

V. Ondes harmoniques.

1. L’énergie d’une molécule.

Considérons une petite particule de masse m dans le milieu de propagation. Son déplacement y(t) est décrit par

léquation y(t) = Asin(wt + ¢).
Commencons par calculer son énergie cinétique :

La vitesse de la particule est la dérivée de sa position par rapport au temps :

v(t) = % = Aw cos(wt + )

Son énergie cinétique est donnée par la formule classique : E.(t) = 3mu(t)?

1 1
E.(t) = §m[Aw cos(wt + go)]z = EmA%J2 cos?(wt + )

Son énergie potentiel :

La loi de Hooke nous dit que F' = —kx ou

e k est la constante de raideur du ressort (en N/m);
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e 1 est le déplacement par rapport a I’équilibre ;
e Le signe moins indique que la force est toujours opposée au déplacement.

La 2¢ Loi de Newton stipule que la force nette sur la masse m est égale & sa masse multipliée par son

d?x d?x
accélération : F' = ms donc maE = —kx d’ou I’équation différentielle linéaire du second ordre :
d’z  k
— +—2=0
dt2 " m

| k | k [ k
La solution de cette EDH est y(z) = A cos ( :c) + Bsin ( ac) = Asin < —x + go)
m m m

| k
Il s’ensuit que w = / — donc k = mw?
m

L’énergie potentielle emmagasinée par un systéme est égale au travail W effectué par la force extérieure
(Fext, = —F = kx) nécessaire pour déplacer 1'objet de sa position d’équilibre (y(0) = 0) jusqu’a une position
y(t).

y(t) y(t) 21 y(t) ku?(t
W:/ Fextda::/ kede — [R5 ] = ()
0 0 2 0 2

1 1 1
L’énergie potentielle est donc : E,(t) = §ky(t)2 = i(mwQ) [Asin(wt + (p)]Q = EmA2w2 sin?(wt + ¢)
L’énergie mécanique totale E est la somme de ’énergie cinétique et de 1’énergie potentielle :
1 1
E(t) = E.(t) + Ep(t) = EmA2w2 cos?(wt + ¢) + irrLAzw2 sin?(wt + ¢)
1 1
= EmAzwz[cosz(wt + ) + sin®(wt + ¢)] = gmszz
L’énergie d’un oscillateur harmonique (et par extension I’énergie transportée par une onde harmonique) est :

e Proportionnelle a la masse m de la particule oscillante.
e Proportionnelle au carré de la pulsation w? (donc au carré de la fréquence f2).

e Proportionnelle au carré de 'amplitude A2.

2. De I’énergie d’une molécule i 1’énergie Volumique (&)

L’onde sonore est une succession d’oscillateurs. Pour obtenir ’énergie volumique moyenne £, nous devons rem-
placer la masse m de loscillateur par la masse volumique p (masse par unité de volume) du milieu de propagation

(Pair, Peau, etc.). On vient de voir que I’énergie E d’une seule molécule de masse m est : £ = imszz.

Si I'on considére ’énergie Eyolume contenue dans un petit volume V, la masse m des particules dans ce volume
est m = pV (ou p est la masse volumique du milieu).
1 242
Evolume §(pV)w A

L’énergie volumique moyenne £ est :£ = v v

En simplifiant par le volume V', on obtient 1’énergie volumique moyenne (ou densité d’énergie) pour 'onde
sonore :

1
E= ipw2A2 ou
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e p est la masse volumique du milieu (en kg/m?);
e w est la pulsation (en rad/s);

e A est Pamplitude du déplacement des particules (en métres, m).

3. De I’énergie Volumique a ’intensité Sonore (I)

L’intensité sonore I est définie comme la puissance (énergie par unité de temps) qui traverse une unité de surface
perpendiculaire & la direction de propagation.

Imaginons un petit volume de milieu AV =5 - ¢- At devant une surface S. L’énergie contenue dans ce volume
se déplace a la vitesse ¢ (célérité de 'onde sonore) et traverse la surface S pendant le temps At.

L’énergie Eyoume traversant S pendant At est : Epppyme =€ -V =€ - (S - ¢+ At)

Puissance  Eyopume €S -c- At

L’intensité I est donnée par I = = = e
P S S- At S- At
En substituant ’expression de £ trouvée dans le 2., ona : | = %pchAz

4. Relation entre Pamplitude de Déplacement (A) et Pamplitude de pression (Ap).

Le déplacement instantané y(t) d’une particule située a la position x est : y(z,t) = Asin (wt - w—cx)

La pression acoustique Ap(x,t) est la petite variation de pression autour de la pression d’équilibre (la pression
atmosphérique). La relation entre le déplacement d'une particule y et la variation de pression Ap dans un fluide
est donnée par :

Ap(z,t) = —B% o

e B est le Module de compressibilité isentropique du fluide (en Pascals, Pa). Ce module mesure la résistance
du fluide & la compression. I est relié a la masse volumique p, et la vitesse du son ¢ par la formule : B = pc?.
dy

° Iz est la déformation volumique (la dérivée du déplacement par rapport a la position), qui représente les
x

zones de compression/dilatation.

0 . wT W
Ap(z,t) = —B% [A sin (wt — T)} = BA <
w

w
tion de pression Apyq. est atteinte lorsque le terme cos(wt — kx) vaut +1 et vaut BA <> = (pc?)-A- < >
c c

> cos (wt — ""—Cw) Donc, L’amplitude maximale de cette varia-
c

L’amplitude de pression acoustique, Appqq, Souvent noté p, est (Apmax = pch)

Déﬁnition:

| Le produit Z = pc est 'impédance acoustique caractéristique du milieu (en kg/m2 -s ou Rayl).
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Dans la pratique de 'acoustique, l'intensité sonore est souvent exprimée non pas avec 'amplitude de déplacement
A, mais avec amplitude de la pression acoustique Apyq, (la surpression). La relation est alors :

I = 1,06(;.)2142 — Apgnax
2 2pc

Cette derniére formule est trés utilisée car les microphones mesurent directement la pression acoustique Apmaz
qui est souvent notée simplement p, notation ambigué.

5. Pression et intensité efficaces.

Appmaz est Pamplitude de la variation de la pression autour de la pression d’équilibre (la pression atmosphérique) :

p(t) = APmax cos(wt)

Déﬁnition:
La valeur efficace (ou RMS, Root Mean Square) est définie comme la racine carrée de la moyenne du carré
de la grandeur :

T
pet = V(P?) = ilp/o p(t)2dt

e A
Il s’ensuit que peg = \/ T / [Apma cos(wt)}2 dt = ... = —Pmaz (calcul effectué en MAT?2)
0

V2

2
I = Ap?nax _ (peﬂ\/i) — IL?H
2pc 2pc pc
-@'—Propriété

A "2
Pmazx et]zlﬁ

Deft = \ﬁ pc

=)
Il

P REMARQUE

Certains, note cette intensité I, mais dans le contexte des ondes sonores sinusoidales (et en général,
pour toute grandeur physique oscillante caractérisant un flux d’énergie), Uintensité sonore efficace (Ieg) est
identique & l'intensité sonore moyenne, que ’on note simplement 1.

6. Comment ’intensité Sonore Varie dans la Réalité.

L’atténuation Géométrique (Loi en 1/r?).

Pour une source sonore ponctuelle dans un espace libre et homogéne (onde sphérique) :

B P
A2

1(r)
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ou P est la puissance totale émise par la source (constante) en watts(W). Elle représente ’énergie acoustique
totale émise par seconde par la source, dans toutes les directions.

Et, r est la distance & la source.

Dans ce cas, l'intensité I dépend explicitement de la distance r et diminue & mesure que ’on s’éloigne.

L’atténuation par Absorption.

Dans un milieu réel (comme l'air), I’énergie sonore est progressivement absorbée (transformée en chaleur).
L’intensité diminue alors de maniére exponentielle :

ol « est le coefficient d’absorption.

Contrairement & I'impédance acoustique (pc) ou & la célérité (c), la valeur de o dans l'air n'est pas une
constante simple; elle dépend fortement de plusieurs grandeurs physiques :

] Grandeur Physique \ Impact sur « \ Explication / Relation

L’absorption augmente trés forte-

Fré £2 (tres fort
équence (f) o oc £ (tres fort) ment avec le carré de la fréquence.

Complexe / Faible diminu- | L’absorption diminue légérement

T érat T i
empérature (7) tion lorsque la température augmente.

Phénoméne de relaxation molécu-
laire. o est maximale & HR faible ou
moyenne.

Non-linéaire (maximum a

Humidité Relative 10% — 20%)

Augmente légérement avec la pres-
sion ambiante.

Pression Atmosphé-

. Faible augmentation
rique

Ordres de Grandeur : Pour l'air & 20°C et 50% d’humidité relative, « est typiquement :
1= Basses Fréquences (125 Hz) : a ~ 0,0005 4 0,001 dB-m™!;

I hautes Fréquences (4000 Hz) : a ~ 0,054 0,1 dB-m~!7?.

Tableau d’ordres de Grandeur de o 4 125 Hz (en dB/m)

Température (7)

Humidité Relative (HR) |

5°C (278 K) [ 20°C (293 K) [ 35°C (308 K)
Air Trés Sec (5% HR) 5,0-107% 5,0-107% 4,0-107%
Air Sec/Moyen (20% HR) 6,0-107% 8,0-10~* 1,0-1073
Air Humide (50% HR) 7,0-107% 1,0-10°3 1,3-1073
Air Trés Humide (90% HR) 8,0-107% 1,2-1073 1,6-1073

Tableau d’ordres de Grandeur de a 4 4000 Hz (en dB/m)
Température (7)

Humidité Relative (HR) |

5°C (278 K) | 20°C (293 K) | 35°C (308 K)
Air Trés Sec (5% HR) 9,0-1073 1,4-1072 1,6-1072
Air Sec/Moyen (20% HR) 1,4-1072 5,0-10"2 6,4-1072
Air Humide (50% HR) 1,1-1072 1,9-1072 3,4-1072
Air Trés Humide (90% HR) 9,0-107° 1,4-1072 2,4-1072
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Pour aller plus loin : ISO9613 1

7. Les fonctions logarithmes.

Déﬁnition:

Etant donné, un nombre réel a € |0; +oo|, le logarithme de base a, noté log,, est la bijection
réciproque de la fonction exponentielle de base a :

y=a® < z=log,(y)

_ In(x)
1 est défini sur |0; +oo| par log,(z) = .
In(a)
Exemple n°4 :
45 =7 e z—log,(1) = 27 1 49
4T = =lo = —= ~
T g4 ln(4) 9
In(18)
2. 3 =18 <= z = log(18) = ~ 2,63
In(3)

In(18)  In(18)
In(e)

= In(18) ~ 2, 89. Ainsi,

3. =18 «> z = log.(18) = log, () = In(x) |

In(1000)

4. 10* = 1000 <— =1 1000) =
r Oglo( ) ln(lO)

5. 10% = 100000000 <= x = log,,(1 0000 0000) = 8

In(0,0001)
6. 10* =0,0001 <= x= = log,(4(0,0001) = ————~ = —
In(10)
7107 — 112 = 2 = logyg(112) = 22 Ly o5
. = x = lo = ~ .
810 In(10) ’

REMARQUE

L

o Il

ur les calculatrices, log;, est souvent noté log.

(- Propriété

les logarithmes de base a > 0, donc en particulier le logarithme décimal (log;y), ont les mémes propriétés
que In, donc étant donnés deux nombres réels x > 0 et y >0 on a :

IZ" log,(x x y) = log, () + log,(y) I¥" log,(zY) = ylog,(x)
1
5 log, (y) — _log, (y) = log, (y) oz, () = oz ()
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https://www.iso.org/obp/ui/#iso:std:iso:9613:-1:ed-1:v1:fr:sec:D

l

Exemple n°5 : Calcule & la main les nombres suivants :

e log (10') x log (107°) = 10 x (—5) = —50

300
e 1og(300) — log(3) = log <3> = log(100) = 2

3200

—log [ 2= ) = log(100) = 2
0g<32> 0g(100)

40 x 80
e log(40) + log(80) — log(32) = log ()

32

e log (107™) = 7,78

e 1081 = 8,1 car = — a” et log, se neutralisent comme e™(®) = g

Exemple n° 6 : Résous

In(2187) log(2187)
1. 3 4+12=21990on a :3* = 2187 donc ¢ = —— =7 = —

In(3) log(3)
log(759375
2. z° = 759375 on a : log (z%) = 5log(x) = log(759375) donc log(z) = og(5)
- — 1010g(7559375) — 15

3. 5% = 1000 on a : logs (5%) = xlogs(5) = = X 1 = log;(1000) ~ 4,29

8. Intensité sonore en décibels.

L’oreille humaine a deux caractéristiques qui rendent 1’échelle linéaire de 'intensité I peu pratique :

I Plage dynamique immense : L'intensité sonore que 'oreille peut percevoir s’étend sur une plage gigantesque,

allant de 1072 W/m? (seuil d’audition) & environ 1 W/m? (seuil de douleur), soit un facteur de 102 (mille
milliards).

I Sensibilité logarithmique : La perception du volume par loreille n’est pas linéaire. Pour qu’un son paraisse
deux fois plus fort, son intensité doit étre multipliée par environ dix.

Pour gérer cette énorme plage et refléter la fagon dont nous percevons le son, on utilise une échelle qui "compresse"
cette plage : I'échelle logarithmique.

< s

Déﬁnltlon:

Le niveau d’intensité sonore, noté L; ou SIL (Sound Intensity Level), est défini a laide de V'intensité
sonore I mesurée et d'une intensité de référence Iy :

I
L] == 1010g10 <>
Iy
ou Iy = 10712 W/m?

Son unité, sans dimension physique, est le décibel, noté dB.
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=2
= P REMARQUE

=4

Le décibel (dB) est basé sur le Bel (B), une unité trop grande pour un usage courant. Le décibel est

simplement le dixiéme du Bel :L; (en Bels) = log;, % :

1
Le Seuil d’audition I = Iy = 1072W/m? correspond a L; = 10log,, (IO> = 10log,0(1) = 0 dB
0

1
Le Seuil de Douleur I = 1W /m? correspond a L; = 10log;, (10_12> = 10log;((10'?)
=10 x 12 =120 dB

2r I I I
101logy, <I> = 101log;, (2 X > = 101log;((2) + 101log;, <> ~ 3.01 + 101log,, <> :
0 I I I

Multiplier 'intensité sonore par 2 revient & ajouter 3 dB.

9. Les décibels pondéré (A).

L’oreille humaine n’entend pas toutes les fréquences avec la méme intensité. Nous sommes trés sensibles aux
sons médiums et aigus (comme la voix humaine ou les cris), mais nous entendons beaucoup moins bien les sons
trés graves (basses fréquences).

¢’est 'unité de référence pour :
e La santé publique : Evaluer la géne réelle ou le risque de perte auditive ;

e La réglementation : Les lois sur le bruit routier ou le voisinage sont presque toujours exprimées en dB(A).

Niveau sonore | Exemple concret Ressenti humain
0 - 20 dB(A) Désert, chuchotement, respiration | Trés calme

30 - 40 dB(A) Bibliothéque, chambre la nuit Calme

50 - 60 dB(A) Lave-vaisselle, pluie modérée Supportable

65 dB(A) Conversation, voiture & 10m | Bruit courant

75 - 85 dB(A) Aspirateur, rue passante Fatigant

90 - 100 dB(A) | Tondeuse a gazon, klaxon Dangereux

120+ dB(A) Avion au décollage Douleur

Le fonctionnement du filtre "A" : des pondérations agissent comme un égaliseur qui "nettoie" le signal
physique pour qu’il ressemble & ce que 'humain entend. Mathématiquement, on applique une correction en
décibels selon la fréquence (f) :

e A 20 Hz (trés grave) : Le filtre retire environ 50 dB.
e A 1000 Hz : La correction est de 0 dB. C’est le point de référence.

e A 3000 Hz : Le filtre ajoute environ 1,2 dB.

P REMARQUE

| Nous appliquerions pas ce filtre dans cette fiche.
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10. Pression acoustique en décibels.

Le niveau sonore basé sur la pression est appelé Niveau de Pression Acoustique (L, ou SPL, Sound Pressure
Level). Il est défini par la formule suivante :

Pbo
ou
e p est 'amplitude de pression acoustique mesurée (en Pascals, Pa).

e pp est amplitude de pression de référence, qui correspond au seuil d’audition humain (a 1 kHz) :

pPo ~ 20 pPa =2 x107% Pa

2
Exercice n° 1 :Démontre que p—Q = 10L»/10
Po

2 2 2
p p Ly <P > 10Le/10 P

L,=20lo — | =101lo — | donc —= =lo — | soit 107r/*Y = —
P g10 <p0> g10 (p%) 10 £10 pg p(z)

11. Sommes des intensités.

Lorsque deux sources sonores S7 et Sy fonctionnent simultanément, la pression acoustique instantanée totale
Diotal(t) €n un point est la somme algébrique des pressions instantanées de chaque source : pyotar (t) = p1(t) +p2(t).

1 /7
Par définition, la pression efficace totale est pef total = \/T/ Drotal (£)2dt. Donc,
0

1 T
Proa = 5 | 01(0)+pa(t))*
1T ) T 2 (T
== )2dt + — t)2dt = t)pa(t)dt
T/o p1(t) +T/o pa2(t)*dt + T/o p1(t)p2(t)

terme de corrélation (ou d(interférence)

Deux sources sont dites incohérentes (ou non corrélées) si elles sont indépendantes et n’ont pas de relation de
phase fixe (par exemple, deux voitures, deux machines différentes, un moteur et une conversation).Dans ce cas,
sur une longue période (T'), le produit des deux pressions instantanées (pi(¢)p2(t)) sera alternativement positif
et négatif, s’annulant en moyenne.

1 /T
Si S et Sy sont incohérentes = T/ p1(t)p2(t)dt = 0
0

Et 'équation se simplifie a : pzﬂ’mtal = pgﬂ’l + pgfm.

Explication : Si pi(¢) est un bruit aléatoire, et pa(t) est un autre bruit aléatoire indépendant, le produit
p1(t)p2(t) prendra des valeurs aléatoirement positives et négatives. L'intégrale sur une période d’intégration 7'
suffisamment longue (quelques secondes, comme le fait Poreille ou un sonomeétre), tend vers zéro.

Tg\rj REMARQUE
Méme si deux sources produisaient des ondes harmoniques (comme un bruit de moteur dominé par une
certaine fréquence) :

e Décalage de Fréquence : Si les fréquences sont légérement différentes (ce qui est toujours le cas
dans la réalité), l'une des ondes va "glisser" par rapport a l'autre. Le déphasage évoluera de 0 a
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27 constamment. Sur une longue durée, toutes les relations de phase (constructives et destructives)
seront présentes, et la moyenne du terme de corrélation s’annulera.

e Décalage de Trajet : La phase acoustique est extrémement sensible & la distance. Un décalage d’une
demi-longueur d’onde suffit & passer d’une interférence constructive a destructive.

Dans un environnement réel, les réflexions, les trajets multiples et le mouvement de ’air font que la
phase recue de deux sources distinctes varie constamment et de maniére imprévisible, annulant ainsi
la corrélation en moyenne.

L’addition de sons en décibels (dB) n’est pas une simple somme arithmétique, car I’échelle des décibels est
logarithmique, basée sur le rapport des puissances ou des intensités sonores.

(- Propriété

Pour obtenir le niveau sonore total (L) de plusieurs sources (Lq, Lo, ..., Ly) non corrélées, on utilise
la formule suivante de sommation logarithmique :

Liotar = 10 - logy (1051710 4 10L2/10 ... 4 10E0/10) o1
® Liota est le niveau sonore total résultant en dB;
o Li,Lo,...,L, sont les niveaux sonores individuels en dB;

e 10L/10 représente Iintensité acoustique.

(Zf Démonstration

Pour deux sources sonores Sy et So incohérentes, ’énergie (I'intensité) est additive. L’intensité totale (Liorqr)
est la somme des intensités individuelles (17 et I2), ce qui se traduit par I’addition des carrés des pressions
efficaces :
p? :p2+p2donc@:pj+pj

total 1 2 p(Q) pg pg
D’apreés le résultat de Uexercice précédent : 10Ltetal/10 = 10L1/10 4 10L2/10

Pour isoler Ligta), nous prenons le logarithme de base 10 de chaque coté :

loglo (10Lt0ta‘1/10> = lOgm <1OL1/10 + 10L2/1O)

Ltlosal = logyg (1091710 4 10%2/1)

Liotal = 10 - 1ogyg (1010 + 10%2/10)

Exemple n° 7 : Deux sources sonores de 75 dB chacune donnent un niveau total de :

Liotar = 10 - logy (1075/10 4 1075/10) = 10 - logy (2 - 107-%) = 10 - (logy(2) + 7.5)
~ 10 - (0.301 + 7.5) = 78.01 dB.
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Propriété : Régle Pratique :

| le niveau sonore total de deux sons de niveaux identiques, est celui du premier son augmenté de 3dB.

VI. Acoustique des lieux.

1. Reéflexion

La réflexion acoustique est le rebond d’une onde sonore sur une surface. C’est ’analogue de la réflexion de la
lumiére sur un miroir. Un rayon sonore se réfléchit sur un obstacle lorsque la longueur d’onde A est trés inférieure
a la dimension D de cet obstacle A < D :

Rayon incident Aayon réfléchi
A<D / P=1
: T

P REMARQUE

| En réalité,une partie de I’énergie sonore est absorbée par I'obstacle et seule la partie restante est réfléchie.

2. Diffraction a travers un trou .

La diffraction est la capacité d’une onde & contourner un obstacle ou a s’étaler aprés avoir traversé une ouverture.

Lorsqu’une onde sonore rencontre un trou, si sa longueur d’onde A > D, alors elle se propage dans de multiples
directions a partir de 'ouverture, comme si le trou était devenu une nouvelle source sonore, sinon elle continue
simplement en ligne droite.

Rayon sonsore
entrant

A>D

Pour le son, les longueurs d’onde audibles (\) sont beaucoup plus grandes que celles de la lumiére visible, ce qui
explique pourquoi nous observons la diffraction sonore plus facilement dans la vie courante :

, Longueur .
Fréquence (f) d’onde (\) Commentaire
Basses Fréquences ~3.4m Se diffracte facilement autour
(100 Hz) A d’une porte.
, Difficile & diffracter par une
Hautes Fréquences . . -
~ 3,4 cm porte. La diffraction est négli-
(10 000 Hz)
geable.
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3. Diffusion.

Lorsqu’un rayon sonore incident, de longueur d’onde A rencontre une surface présentant des irrégularités de
dimension D = A, il se produit un phénoméne de diffusion qui conduit & un éclatement, dans toutes les
directions, de I'onde plane associée au rayon sonore incident.

Rayons

J incidents J

4. Zone d’ombre.

Quand une onde sonore de longueur d’onde A rencontre un obstacle présentant une dimension D > A, il se
produit un phénomeéne de zone d’ombre acoustique derriére cet obstacle.

zone
d’ombre

source
sonore

5. Le Nombre de Fresnel pour un Obstacle (V)

Lorsqu’on parle d’un obstacle (comme un mur antibruit ou un pilier), le nombre de Fresnel (V) est un indicateur
de efficacité de ’écran et de la profondeur de la zone d’ombre. En acoustique environnementale (méthode de
Maekawa), on utilise une définition spécifique basée sur la différence de trajet.

on calcule N & partir de la "déviation" que le son doit effectuer pour contourner ’obstacle :N = 275 ou

I § est la différence de marche (en métres). C'est la différence entre le trajet le plus court passant au-dessus
de 'obstacle et le trajet direct théorique a travers 'obstacle :

5 - (dsource—mommet + dsommet—)recepteur) - dsource—)recepteur
="\ est la longueur d’onde du son.

Le nombre de Fresnel permet de prédire le silence (’atténuation) derriére I'obstacle. Plus N est grand, plus la
zone d’ombre est "profonde" (silencieuse).

I Si N > 0 : Le récepteur est dans la zone d’ombre géométrique. Le son est atténué car il doit se diffracter
sur le bord.

I Si N =~ 0 : Le récepteur est sur la ligne de visée du bord de I'obstacle. L’atténuation est d’environ 5 dB.
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I Si N <0 : Le récepteur "voit" la source. On est en zone éclairée, mais il reste une légére atténuation due

a la proximité du bord (zone de transition).

Exemple n° 8 : Pourquoi les sons graves "percent" 'ombre ?

Longueur Nombre de

Type de son d’onde ()\) Fresnel (N)

Résultat

Grande (ex : 3

Faible atténuation. Le son “épou-

quée.

Grave (Basse) m) Petit N se” le bord et pénétre loin dans la
zone d’ombre.

Petite (ex - Forte atténuation. Le son est blo-

Aigu (Haut) 0,03 m) Grand N qué, la zone d’ombre est trés mar-

@, Calcul de l’atténuation (A)

L’atténuation apportée par un écran (en dB) peut étre estimée par la formule simplifice de Maekawa :

AdB =10 10g10(20N + 5)

Exemple n°9 : Etudions lefficacité d’un écran antibruit. Dans cet exemple, on considére une onde sonore
d’une fréquence de 1 000 Hz se déplacant a la vitesse de 343m/s.

07m i

el B —
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7 T////W//?I ey /A  a/ W),L>

J

25m

-

1. SE=+/T724+2,32~7,37 ER=./252+1,32~25,03 SR= 322+ 12 ~ 32,02

2. La différence de marche est : § = (dsourceﬁsommet + dsommet%recepte’m’) - dsou7'ce~>r6(;epteu7'

§ = (SE+ ER) — SR = (7,37 + 25,03) — 30,02 = 0, 38

; 343
3. La longueur d’onde est A = 1" = ; = 1000 = 0,343 m
2 2 ,
4. Le nombre de Fresnel est N = —6 = 2x0,38 ~ 2,22
A 0,343

5. Déterminer lefficacité du mur : 10log,,(20N +5) ~ 16,9 dB
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