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Ondes.

2 Fiche no 1 1

I. Rappels de semestre 1.

On a représenter la sinusoïde dé�nie par f(t) = λ+A sin(ωt+ φ)

t
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−11, 291

☞ sa période est T = 0, 3

☞ sa fréquence est f =
1

T
=

1

0.3
≃ 3, 33 Hz

☞ son amplitude est A = 2

☞ sa pulsation est ω = 2πf =
2π

T
≃ 20, 94rad/s

☞ Avec ses paramètres, expression de f est f(t) = −10 + 2 sin(20, 94t + φ)

☞ Calcule son déphasage φ : f(0) = −11, 291 = −10 + 2 sin(φ)

Donc, sin(φ) =
−11, 291 − (−10)

2
=

−1, 291

2

Et, φ = arcsin

(−1, 291

2

)
≃ −0, 70 ou φ = π − arcsin

(−1, 291

2

)
≃ 3, 84

La fonction étant décroissante au voisinage de 0 le déphasage est φ = 3, 84 rad.

Mais, 3, 843 > π donc ce n'est pas une mesure principale : φ ≃ 3, 84 − 2π ≃ −2, 44

☞ L'expression de f est f(t) = −10 + 2 sin(20, 94t − 2, 44)



II. Concept d'ondes.

Une variation de grandeur physique qui se propage dans un espace suite à une perturbation constitue une onde.
La grandeur physique qui varie est appelée grandeur caractéristique de cette onde. Pour le son, cette grandeur
est la pression, et pour un champ électromagnétique, les deux grandeurs qui varient sont le champ électrique
et le champ magnétique.

1. Perte d'énergie : amortissement.

C'est la perte d'énergie due à l'interaction de l'onde avec le milieu de propagation est appelé l'amortissement
ou l'atténuation.

� Cause : Le milieu (l'air, l'eau, un câble, etc.) convertit une partie de l'énergie de l'onde en une autre
forme, souvent de la chaleur.

� Conséquence : L'amplitude de l'onde diminue souvent de manière exponentielle avec la distance dans
un milieu homogène qui la sépare de sa source.

2. La divergence Géométrique.

C'est la perte d'intensité surfacique due à la répartition de l'énergie sur un front d'onde de plus en plus
grand, même dans un milieu non dissipatif. On parle de dispersion énergétique. Cette perte n'est pas due à
une absorption de l'énergie par le milieu dans lequel l'onde se propage mais à la forme de son front d'onde.

� Ondes Sphériques (Source ponctuelle) :

L'énergie totale (Etot) se répartit sur la surface
de la sphère (4πr2). L'intensité I (puissance par
unité de surface) diminue en 1/r2 :

I ∝ 1

r2
⇒ A ∝ 1

r

où A est l'amplitude de l'onde et r la distance.

L'intensité I d'une onde est dé�nie comme l'énergie par unité de temps et par unité de surface (soit

la puissance par unité de surface) : I =
P

S
. Donc, S = 4πr2 donc I =

P

4πr2
∝

1

r2
.

L'intensité I d'une onde est proportionnelle au carré de son amplitude donc A ∝
1

r

Démonstration

� Ondes cylindriques :
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L'énergie totale (Etot) se répartit sur la surface
de la sphère (4πr2). L'intensité I (puissance par
unité de surface) diminue en 1/r :

I ∝ 1

r
⇒ A ∝ 1√

r

où A est l'amplitude de l'onde et r la distance.

� Ondes Planes (Idéales) : Elles ne subissent aucune divergence géométrique. Si le milieu n'amortit
pas, l'amplitude reste constante. C'est le seul cas idéalisé d'une propagation sans a�aiblissement (dans
un milieu sans pertes).

Source

O
nd
es

sp
hé
ri
qu
es Ondes planes

III. Onde progressive non-amortie et non-dispersive.

Une onde progressive est le phénomène de propagation d'une perturbation (ou déformation) dans un
milieu, avec transport d'énergie mais sans transport global de matière.

Dé�nition:

� Propagation de la perturbation : La déformation se déplace dans l'espace et le temps.

� Transport d'énergie : L'onde transmet de l'énergie d'un point à un autre.

� Absence de transport de matière : Le milieu lui-même (les molécules, les particules) ne se dé-
place pas globalement avec l'onde. Chaque élément du milieu oscille localement autour de sa position
d'équilibre. Par exemple, une vague fait monter et descendre un bouchon, mais ne le transporte pas
durablement vers le rivage.

� Célérité (c) : C'est la vitesse à laquelle la perturbation se propage dans le milieu. Elle dépend des
propriétés du milieu (densité, température, tension, etc.).

Caractéristiques :

Une onde progressive u(x, t) représente la caractéristique physique qui ondule à l'instant t à la position x. On
suppose que cette onde se déplace dans le sens des x croissants.

La forme temporelle de l'onde est dé�nie par une fonction f :

t
0 T

T : période temporelle

Ce qui signi�e que sur [0, T ], u(0, t) = f(t). Cette forme va se répéter dans
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� le temps :

t
T 2T 3T0

u(0, t) u(x, t)−x
c

t− x

c
t

L'onde se déplace à la vitesse c, donc pour se déplacer de 0 à x, elle met
x

c
secondes. A un instant t donné,

la valeur de l'onde u(x, t) en un point x = a est la même que la valeur de l'onde au point x = 0 à l'instant

t − x

c
. Autrement dit, l'onde au point x à l'instant t est la même que l'onde qui était au point x = 0 à

l'instant t−x

c
. Elle est décalée dans le temps de

x

c
. Il s'en suit que : u(x, t) = u

(
0, t −

x

c

)
= f

(
t −

x

c

)

La forme générale d'une onde progressive, non-amortie et non-dispersive est

☞ u(x, t) = f
(
t− x

c

)
lorsqu'elle se propage suivant l'axe des x croissants.

☞ u(x, t) = f
(
t+

x

c

)
lorsqu'elle se propage suivant l'axe des x décroissants.

Le temps de propagation
x

c
est appelé le retard temporel

Propriété

� l'espace :

x
λ = cT 2λ0

u(x, 0) u(x, t)
−ct

x− ct x

La forme spatiale de l'onde est dé�nie par une fonction g :

t
0 λ

� g(x) = u(x, 0) = f

(−x

c

)

� g(x− ct) = f

(−(x − ct)

c

)
= f

(
t −

x

c

)

Remarque

La période spatiale, notée λ, est appelée la longueur d'onde.

Dé�nition:
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La forme générale d'une onde progressive, non-amortie et non-dispersive est

☞ u(x, t) = g(x − ct) lorsqu'elle se propage suivant l'axe des x croissants.

☞ u(x, t) = g(x + ct) lorsqu'elle se propage suivant l'axe des x décroissants.

Propriété

1. Ondes harmoniques progressives non atténuées.

Considérons la forme d'onde f(x) = A sin(ωx+ φ) alors :

☞ u(x, t) = f
(
t− x

c

)
= A sin

[
ω

(
t −

x

c

)
+ φ

]
= A sin

[
ωt −

ωx

c
+ φ

]
lorsqu'elle se propage suivant l'axe des x croissants.

☞ u(x, t) = f
(
t+

x

c

)
= A sin

[
ω

(
t +

x

c

)
+ φ

]
= A sin

[
ωt +

ωx

c
+ φ

]
lorsqu'elle se propage suivant l'axe des x décroissants.

ω

c
est appelé le nombre d'onde.

Dé�nition:
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2. Ondes stationnaire non atténuées.

Contrairement à l'onde progressive qui se déplace en transportant de l'énergie dans une direction donnée, l'onde
stationnaire semble immobile et ne présente pas de propagation d'énergie nette.

Exemple no 1 : Un exemple concret est la vibration d'une corde d'instrument de musique (guitare, violon,
piano) lorsqu'elle est jouée.

� Mécanisme : Lorsqu'on pince ou frotte la corde, cela crée une onde progressive qui se déplace de l'endroit
où elle a été générée vers les extrémités de la corde.

y1(x, t) = A sin(ωt− kx)

� Ré�exion : Ces extrémités sont généralement �xes (par les chevalets et les mécaniques). Lorsque l'onde
progressive atteint l'extrémité �xe, elle est ré�échie et revient en sens inverse.

y2(x, t) = A sin(ωt+ kx)

� Superposition : L'onde progressive incidente et l'onde progressive ré�échie (appelée onde régressive) se
superposent. Si elles ont la même fréquence et la même amplitude et se propagent dans des directions
opposées, leur interférence produit une onde stationnaire.

y(x, t) = y1(x, t) + y2(x, t)
= A

[
sin(ωt− kx) + sin(ωt+ kx)

]
En utilisant l'identité trigonométrique sin p+ sin q = 2 sin

(p+q
2

)
cos
(p−q

2

)
, on retrouve :

y(x, t) = 2A sin(kx) cos(ωt)
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C'est la structure mathématique de cette séparation des variables (espace et temps) qui est la signature
d'une onde stationnaire.

Remarque

Dans l'onde stationnaire, il y a oscillation, mais pas de déplacement de la forme d'onde :

1. L'amplitude en x est Statique :

☞ Cette amplitude est �xe dans le temps. Par exemple, le point situé à xn÷ud aura toujours une am-
plitude de zéro, quelle que soit la valeur de t. Ce point ne vibre jamais, il n'y a pas de transport
d'énergie à travers lui.

☞ Inversement, le point situé à xventre aura toujours l'amplitude maximale 2A.

☞ La dépendance en x détermine un motif �xe (n÷uds et ventres) qui ne bouge jamais.

2. La phase est uniforme, le terme cos(ωt) module la vibration pour tous les points x simultanément :

☞ Pour t = 0, cos(ωt) = 1. L'onde stationnaire prend sa forme maximale : y(x, 0) = 2A sin(kx) :

x

y

2A sin(kx)

−2A sin(kx)

N0 N1 N2

Ventre

Ventre

Ventre

Ventre

Forme à cos(ωt) = 1

Forme à cos(ωt) = −1

Fixation
Fixation

Pour t = T/2, cos(ωt) = −1. L'onde stationnaire y
(
x, T/2

)
= −2A sin(kx) est en opposition de

phase.

☞ À un autre instant, disons t = T/4, alors ωt =
π

2
et cos(ωt) = 0. L'onde est plate

(
y(x, T/4) = 0

)
pour tous les x en même temps :

x

y

N0 N1 N2

Ventre Ventre

Forme à t = T/4 (amplitude nulle partout)

Fixation
Fixation

☞ Tous les points vibrent en phase. Il n'y a pas de décalage temporel (retard x/c) entre la vibration
d'un point x1 et d'un point x2.

Pour obtenir les 3 n÷uds (la deuxième harmonique) :

☞ localisez le milieu : c'est généralement au niveau de la 12e frette (l'octave) ;

☞ touchez légèrement : posez très délicatement le doigt sur la corde juste au-dessus du �l de la 12e frette ;
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☞ pincez la corde : frapper la corde (avec un médiator ou le doigt) ;

☞ relâchez le doigt : retirez immédiatement le doigt après avoir pincé la corde pour permettre à l'onde
stationnaire de s'établir.

Harmonique n
Longueur
d'onde λ

Nombre de
Ventres

Nombre de
N÷uds

1 2L 1 2

2 L 2 3

3 2L/3 3 4
... ...

...
...

n 2L/n n n+ 1

Remarque
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IV. L'équation d'onde.

f(a+ x)
DL
≈ f(a) + xf ′(a) +

x2

2
f ′′(a)

Rappel:

Exemple no 2 : Le développement limité du cosinus en 0 :

☞ Le formule s'écrit : f(0 + x)
DL
≈ f(0) + xf ′(0) +

x2

2
f ′′(0)

☞ f(x) = cos(x) , f ′(x) = − sin(x), et f ′′(x) = − cos(x)

☞ f(x) ≈ cos(0) − x sin(0) −
x2

2
cos(0) = 1 −

x2

2

π
2−π

2

π−π 3π
2−3π

2
2π−2π

−1

1 y = 1
y
=
1−

x
22

x1(0) = x2(0) = −2 x1(0) = −x2(0) = −2
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La constante de raideur est dé�nie par la Loi de Hooke (pour les déformations faibles) qui relie la force
−→
F de

rappel exercée par le ressort à son allongement ou sa compression (∆x) par rapport à sa position d'équilibre :
−→
F = −k∆x

−→
i où k est la constante de raideur, ∆x son déplacement par rapport à sa position d'équilibre, et−→

i un vecteur unitaire orienté selon la direction du déplacement.

� Position d'équilibre (∆x = 0)

� Position étirée :

∆x > 0

F⃗ = −k∆x
−→
i

−→
i

Rappel:

Pour mettre en évidence la structure mathématique du phénomène ondulatoire, nous allons étudier le système
constitué d'une chaîne in�nie d'oscillateurs identiques composés de masses m et de ressorts de raideurs k montés
en série :

· · · · · ·

n− 1 n n+ 1

a a

∆n−1(t) ∆n(t) ∆n+1(t)

En notant a la longueur de chaque ressort à l'équilibre, et ∆n l'écart de la masse numéro n par rapport à sa
position d'équilibre, on peut établir l'équation du mouvement de la masse numéro n :

m∆′′
n(t) = −k

[
∆n(t) − ∆n−1(t)︸ ︷︷ ︸

Ressort de gauche

]
+ k

[
∆n+1(t) − ∆n(t)︸ ︷︷ ︸

Ressort de droite

]
Passons du discret au continue :

� Hypothèse : On considère que le mouvement de la chaîne n'est pas seulement un ensemble de points
discrets, mais qu'il peut être décrit par une seule fonction X(x, t).

� La fonction X(x, t) représente le déplacement de la matière non seulement au niveau des masses (positions
xn = na), mais potentiellement en tout point x de la droite.

� Changement de notation :

Notation Discrète Signi�cation Notation continue

∆n−1(t) Déplacement de la masse n− 1 X(x − a, t)

∆n(t) Déplacement de la masse n (masse centrale) X(x, t)

∆n+1(t) Déplacement de la masse n+ 1 X(x + a, t)

L'espace est maintenant une variable continue x, échantillonnée aux positions des masses x−a, x, et x+a.

La fonction X(x, t) est le déplacement d'une masse située à la position d'équilibre x au cours du temps t.
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Puisque la position X dépend maintenant de deux variables (x et t), la dérivée par rapport au temps doit devenir
une dérivée partielle :

L'équation du mouvement devient alors :m
∂2X

∂t2
(x, t) =−k

[
X(x, t)−X(x−a, t)

]
+k
[
X(x+a, t)−X(x, t)

]
On a supposé que a est "petit", ce qui permet d'e�ectuer les développements limites suivants :

X(x− a, t)
DL
≈ X(x, t)− a

∂X

∂x
+

a2

2

∂2X

∂x2

X(x+ a, t) ≈ X(x, t) + a
∂X

∂x
+

a2

2

∂2X

∂x2

Grâce à ces développements, on peut exprimer X(x− a, t) et X(x+ a, t) en fonction de X(x, t) :

m
∂2X

∂t2
(x, t) = −k

X(x, t)−
(
X(x, t)− a

∂X

∂x
+

a2

2

∂2X

∂x2

)
︸ ︷︷ ︸

X(x−a,t)

+ k


(
X(x, t) + a

∂X

∂x
+

a2

2

∂2X

∂x2

)
︸ ︷︷ ︸

X(x+a,t)

−X(x, t)


= −k

[
a
∂X

∂x
− a2

2

∂2X

∂x2

]
+ k

[
a
∂X

∂x
+

a2

2

∂2X

∂x2

]
= ka2

∂2X

∂x2

Cette équation peut être réécrite sous la forme :

∂2X

∂x2
− 1

c2
∂2X

∂t2
= 0 avec c =

√
ka2

m

Cette équation aux dérivées partielles est l'équation d'onde ou équation de d'Alembert. Cette équation relie
la dérivée seconde par rapport au temps t et la dérivée seconde par rapport à la variable d'espace x. Le fait
que la fonction X véri�e cette équation signi�e que X possède une structure d'onde. En d'autres termes, la
perturbation X se propagera dans l'espace au cours du temps, et variera en fonction du temps en tout point �xe
de l'espace. Il en va de même pour la force, la vitesse, l'accélération : toutes ces fonctions, qui sont reliées à X
ou à ses dérivées, ont une structure d'onde. Le paramètre 'c' est homogène à une vitesse : c'est la célérité de
l'onde.

1. Transformation vers le modèle continu (macroscopique).

Modèle Discret
(Chaîne

d'oscillateurs)

Propriété continue
(Milieu réel)

Symbole Rôle Physique

m/a Masse volumique (ou densité) ρ
Représente l'inertie du milieu (sa

résistance à l'accélération).

Ka
Module d'élasticité (ou de

rigidité)
E

Représente la force de rappel
du milieu (sa résistance à la

déformation).

En substituant ces relations dans la formule de célérité : c =

√
Ka2

m
=

√
(Ka) · a
(m/a) · a

=

√
Ka

m/a
=

√
E

ρ
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2. Application à l'onde sonore dans un gaz (l'air).

Pour une onde sonore se propageant dans un gaz, comme l'air, la célérité est donnée par la formule de Laplace :

cair =

√
γP0

ρ
donc E = γP0

� ρ est la masse volumique du gaz (correspondant à m/a).

� γ est l'indice adiabatique et P0 la pression statique (ou pression à l'équilibre) du gaz avant le passage
de l'onde sonore.

� γP0 est le module de compressibilité adiabatique, qui représente le terme d'élasticité (correspondant à
Ka).

La célérité du son est déterminée par les propriétés macroscopiques du milieu à l'état d'équilibre. C'est la pression
de l'air au repos P0 qui détermine, avec la masse volumique ρ et le coe�cient adiabatique γ, la "raideur" du
gaz face à une petite compression, et donc la vitesse à laquelle cette perturbation se propage.

L'indice adiabatique γ, aussi noté κ, dépend du nombre de degrés de liberté de la molécule de gaz (sa nature :
monoatomique, diatomique, etc.).

Type de Gaz Exemple
Valeur théorique

de γ

Monoatomique Hélium (He), Néon (Ne) 5/3 ≈ 1, 67

Diatomique Air (N2 à 78% et O2 à 21%), Hydrogène (H2) 7/5 = 1, 40

Polyatomique Méthane (CH4), Vapeur d'eau (H2O) ≈ 1, 30

3. Formulation à partir de la température.

La loi des gaz parfaits (gaz à l'équilibre) se formule mathématiquement de la manière suivante : PV = nRT où

� P est la pression en Pascal (Pa) : Force exercée par unité de surface par les molécules sur les parois du
conteneur.

� V est le volume en m3, et T la température en Kelvin.

� n est le nombre de mols, c'est une quantité de matière : 1 mole = 6, 022 × 1023 unités.
Ce nombre gigantesque est appelé la constante d'Avogadro.

� Constante des gaz parfaits (R) : R ≈ 8, 314 J · mol−1 · K−1

La Masse Molaire est la masse d'une mole de n'importe quelle substance. Elle est numériquement égale à la
masse atomique ou moléculaire relative de cette substance (exprimée en grammes, mais avec l'unité g/mol).

Substance Masse Moléculaire (u) Masse Molaire (M)

Hydrogène (H) ≈ 1, 01 u ≈ 1, 01 g/mol
Oxygène (O) ≈ 16, 00 u ≈ 16, 00 g/mol
Carbone (C) ≈ 12, 01 u ≈ 12, 01 g/mol
Azote (N) ≈ 14, 01 u ≈ 14, 01 g/mol
Eau (H2O) ≈ 18, 01 u ≈ 18, 01 g/mol
Air (N2, O2) ≈ 28, 97 u ≈ 28, 97 g/mol
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Meau = 2×M(H) + 1×M(O) ≈ (2 × 1, 01) + 16, 00 = 18, 02 g/mol

Remarque

D'après la loi des gaz parfaits P0V = nRT où le nombre de mols n =
masse du gaz
Masse molaire

.

Ainsi, P0V =
(m
M

)
RT .

Comme ρ =
m

V
on a : m = ρV et P0V =

(
ρV

M

)
RT donc P0 =

ρRT

M

c =

√
γP0

ρ
donc c =

√√√√γ
ρRT

M
ρ

donc c =

√
γRT

M

Exemple no 3 : Calculons la vitesse du son dans l'air à 20◦ :

� La température absolue T = 20◦C+ 273, 15 = 293, 15 K

� Indice adiabatique de l'air (γ) : γ ≈ 1, 40

� La masse molaire de l'air M ≈ 0, 02897 kg · mol−1

c =

√
1, 40 × 8, 314 J ·mol−1 ·K−1 × 293, 15 K

0, 02897 kg ·mol−1
≈ 343, 5m/s

V. Ondes harmoniques.

1. L'énergie d'une molécule.

Considérons une petite particule de masse m dans le milieu de propagation. Son déplacement y(t) est décrit par
l'équation y(t) = A sin(ωt + φ).

A Commençons par calculer son énergie cinétique :

La vitesse de la particule est la dérivée de sa position par rapport au temps :

v(t) =
dy

dt
= Aω cos(ωt + φ)

Son énergie cinétique est donnée par la formule classique : Ec(t) =
1
2mv(t)2

Ec(t) =
1

2
m
[
Aω cos(ωt+ φ)

]2
=

1

2
mA2ω2 cos2(ωt + φ)

B Son énergie potentiel :

La loi de Hooke nous dit que F = −kx où

� k est la constante de raideur du ressort (en N/m) ;
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� x est le déplacement par rapport à l'équilibre ;

� Le signe moins indique que la force est toujours opposée au déplacement.

La 2e Loi de Newton stipule que la force nette sur la masse m est égale à sa masse multipliée par son

accélération : F = m
d2x

dt2
donc m

d2x

dt2
= −kx d'où l'équation di�érentielle linéaire du second ordre :

d2x

dt2
+

k

m
x = 0

La solution de cette EDH est y(x) = A cos

(√
k

m
x

)
+B sin

(√
k

m
x

)
= A sin

(√
k

m
x + φ

)

Il s'ensuit que ω =

√
k

m
donc k = mω2

L'énergie potentielle emmagasinée par un système est égale au travail W e�ectué par la force extérieure
(Fext = −F = kx) nécessaire pour déplacer l'objet de sa position d'équilibre (y(0) = 0) jusqu'à une position
y(t).

W =

∫ y(t)

0
Fextdx =

∫ y(t)

0
kxdx =

[
k
x2

2

]y(t)
0

=
ky2(t)

2

L'énergie potentielle est donc : Ep(t) =
1

2
ky(t)2 =

1

2
(mω2)

[
A sin(ωt+ φ)

]2
=

1

2
mA2ω2 sin2(ωt + φ)

L'énergie mécanique totale E est la somme de l'énergie cinétique et de l'énergie potentielle :

E(t) = Ec(t) + Ep(t) =
1

2
mA2ω2 cos2(ωt + φ) +

1

2
mA2ω2 sin2(ωt + φ)

=
1

2
mA2ω2

[
cos2(ωt + φ) + sin2(ωt + φ)

]
=

1

2
mω2A2

L'énergie d'un oscillateur harmonique (et par extension l'énergie transportée par une onde harmonique) est :

� Proportionnelle à la masse m de la particule oscillante.

� Proportionnelle au carré de la pulsation ω2 (donc au carré de la fréquence f2).

� Proportionnelle au carré de l'amplitude A2.

2. De l'énergie d'une molécule à l'énergie Volumique (E)

L'onde sonore est une succession d'oscillateurs. Pour obtenir l'énergie volumique moyenne E , nous devons rem-
placer la massem de l'oscillateur par la masse volumique ρ (masse par unité de volume) du milieu de propagation

(l'air, l'eau, etc.). On vient de voir que l'énergie E d'une seule molécule de masse m est : E =
1

2
mω2A2.

Si l'on considère l'énergie Evolume contenue dans un petit volume V, la masse m des particules dans ce volume
est m = ρV (où ρ est la masse volumique du milieu).

L'énergie volumique moyenne E est :E =
Evolume

V
=

1
2(ρV )ω2A2

V

En simpli�ant par le volume V , on obtient l'énergie volumique moyenne (ou densité d'énergie) pour l'onde
sonore :

E =
1

2
ρω2A2 où
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� ρ est la masse volumique du milieu (en kg/m3) ;

� ω est la pulsation (en rad/s) ;

� A est l'amplitude du déplacement des particules (en mètres, m).

3. De l'énergie Volumique à l'intensité Sonore (I)

L'intensité sonore I est dé�nie comme la puissance (énergie par unité de temps) qui traverse une unité de surface
perpendiculaire à la direction de propagation.

Imaginons un petit volume de milieu ∆V = S · c ·∆t devant une surface S. L'énergie contenue dans ce volume
se déplace à la vitesse c (célérité de l'onde sonore) et traverse la surface S pendant le temps ∆t.

L'énergie Evolume traversant S pendant ∆t est : Evolume = E · V = E · (S · c · ∆t)

L'intensité I est donnée par I =
Puissance

S
=

Evolume

S ·∆t
=

E · S · c · ∆t

S · ∆t
= E · c

En substituant l'expression de E trouvée dans le 2., on a : I =
1

2
ρcω2A2

4. Relation entre l'amplitude de Déplacement (A) et l'amplitude de pression (∆p).

Le déplacement instantané y(t) d'une particule située à la position x est : y(x, t) = A sin
(
ωt− ωx

c

)
.

La pression acoustique ∆p(x, t) est la petite variation de pression autour de la pression d'équilibre (la pression
atmosphérique). La relation entre le déplacement d'une particule y et la variation de pression ∆p dans un �uide
est donnée par :

∆p(x, t) = −B
∂y

∂x
où

� B est le Module de compressibilité isentropique du �uide (en Pascals, Pa). Ce module mesure la résistance
du �uide à la compression. Il est relié à la masse volumique ρ, et la vitesse du son c par la formule : B = ρc2.

�

∂y

∂x
est la déformation volumique (la dérivée du déplacement par rapport à la position), qui représente les

zones de compression/dilatation.

∆p(x, t) = −B
∂

∂x

[
A sin

(
ωt− ωx

c

) ]
= BA

(
ω

c

)
cos

(
ωt − ωx

c

)
. Donc, L'amplitude maximale de cette varia-

tion de pression ∆pmax est atteinte lorsque le terme cos(ωt−kx) vaut ±1 et vaut BA

(
ω

c

)
= (ρc2) ·A ·

(
ω

c

)

L'amplitude de pression acoustique, ∆pmax, souvent noté p, est ∆pmax = ρcωA

Le produit Z = ρc est l'impédance acoustique caractéristique du milieu (en kg/m2 · s ou Rayl).

Dé�nition:
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Dans la pratique de l'acoustique, l'intensité sonore est souvent exprimée non pas avec l'amplitude de déplacement
A, mais avec l'amplitude de la pression acoustique ∆pmax (la surpression). La relation est alors :

I =
1

2
ρcω2A2 =

∆p2max

2ρc

Cette dernière formule est très utilisée car les microphones mesurent directement la pression acoustique ∆pmax

qui est souvent notée simplement p, notation ambiguë.

5. Pression et intensité e�caces.

∆pmax est l'amplitude de la variation de la pression autour de la pression d'équilibre (la pression atmosphérique) :

p(t) = ∆pmax cos(ωt)

La valeur e�cace (ou RMS, Root Mean Square) est dé�nie comme la racine carrée de la moyenne du carré
de la grandeur :

pe� =
√
⟨p2⟩ =

√
1

T

∫ T

0
p(t)2 dt

Dé�nition:

Il s'ensuit que pe� =

√
1

T

∫ T

0

[
∆pmax cos(ωt)

]2
dt = . . . =

∆pmax√
2

(calcul e�ectué en MAT2)

I =
∆p2max

2ρc
=

(
pe�

√
2
)2

2ρc
=

p2
e�

ρc

pe� =
∆pmax√

2
et I =

p2e�
ρc

Propriété

Certains, note cette intensité Ie�, mais dans le contexte des ondes sonores sinusoïdales (et en général,
pour toute grandeur physique oscillante caractérisant un �ux d'énergie), l'intensité sonore e�cace (Ie�) est
identique à l'intensité sonore moyenne, que l'on note simplement I.

Remarque

6. Comment l'intensité Sonore Varie dans la Réalité.

A L'atténuation Géométrique (Loi en 1/r2).

Pour une source sonore ponctuelle dans un espace libre et homogène (onde sphérique) :

I(r) =
P

4πr2
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où P est la puissance totale émise par la source (constante) en watts(W). Elle représente l'énergie acoustique
totale émise par seconde par la source, dans toutes les directions.

Et, r est la distance à la source.

Dans ce cas, l'intensité I dépend explicitement de la distance r et diminue à mesure que l'on s'éloigne.

B L'atténuation par Absorption.

Dans un milieu réel (comme l'air), l'énergie sonore est progressivement absorbée (transformée en chaleur).
L'intensité diminue alors de manière exponentielle :

I(r) =
P

4πr2
e−αr

où α est le coe�cient d'absorption.

Contrairement à l'impédance acoustique (ρc) ou à la célérité (c), la valeur de α dans l'air n'est pas une
constante simple ; elle dépend fortement de plusieurs grandeurs physiques :

Grandeur Physique Impact sur α Explication / Relation

Fréquence (f) α ∝ f2 (très fort)
L'absorption augmente très forte-
ment avec le carré de la fréquence.

Température (T )
Complexe / Faible diminu-
tion

L'absorption diminue légèrement
lorsque la température augmente.

Humidité Relative
Non-linéaire (maximum à
10%− 20%)

Phénomène de relaxation molécu-
laire. α est maximale à HR faible ou
moyenne.

Pression Atmosphé-
rique

Faible augmentation
Augmente légèrement avec la pres-
sion ambiante.

Ordres de Grandeur : Pour l'air à 20◦C et 50% d'humidité relative, α est typiquement :

☞ Basses Fréquences (125 Hz) : α ≈ 0, 0005 à 0, 001 dB ·m−1 ;

☞ hautes Fréquences (4000 Hz) : α ≈ 0, 05 à 0, 1 dB ·m−1 ?.

Tableau d'ordres de Grandeur de α à 125 Hz (en dB/m)

Humidité Relative (HR) ↓ Température (T )
5◦C (278 K) 20◦C (293 K) 35◦C (308 K)

Air Très Sec (5% HR) 5, 0 · 10−4 5, 0 · 10−4 4, 0 · 10−4

Air Sec/Moyen (20% HR) 6, 0 · 10−4 8, 0 · 10−4 1, 0 · 10−3

Air Humide (50% HR) 7, 0 · 10−4 1,0 · 10−3 1, 3 · 10−3

Air Très Humide (90% HR) 8, 0 · 10−4 1, 2 · 10−3 1, 6 · 10−3

Tableau d'ordres de Grandeur de α à 4000 Hz (en dB/m)

Humidité Relative (HR) ↓ Température (T )
5◦C (278 K) 20◦C (293 K) 35◦C (308 K)

Air Très Sec (5% HR) 9, 0 · 10−3 1, 4 · 10−2 1, 6 · 10−2

Air Sec/Moyen (20% HR) 1, 4 · 10−2 5,0 · 10−2 6, 4 · 10−2

Air Humide (50% HR) 1, 1 · 10−2 1, 9 · 10−2 3, 4 · 10−2

Air Très Humide (90% HR) 9, 0 · 10−3 1, 4 · 10−2 2, 4 · 10−2
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Pour aller plus loin : ISO9613_1

7. Les fonctions logarithmes.

Etant donné, un nombre réel a ∈
]
0 ; +∞

[
, le logarithme de base a, noté loga, est la bijection

réciproque de la fonction exponentielle de base a :

y = ax ⇐⇒ x = loga(y)

Il est dé�ni sur
]
0 ; +∞

[
par loga(x) =

ln(x)

ln(a)
.

Dé�nition:

Exemple no 4 :

1. 4x = 7 ⇐⇒ x = log4(7) =
ln(7)

ln(4)
≃ 1, 40

2. 3x = 18 ⇐⇒ x = log3(18) =
ln(18)

ln(3)
≃ 2, 63

3. ex = 18 ⇐⇒ x = loge(18) =
ln(18)

ln(e)
=

ln(18)

1
= ln(18) ≃ 2, 89. Ainsi, loge(x) = ln(x)

4. 10x = 1000 ⇐⇒ x = log10(1000) =
ln(1000)

ln(10)
= 3.

5. 10x = 10000 0000 ⇐⇒ x = log10(1 0000 0000) = 8

6. 10x = 0, 0001 ⇐⇒ x = log10(0, 0001) =
ln(0, 0001)

ln(10)
= −4.

7. 10x = 112 ⇐⇒ x = log10(112) =
ln(112)

ln(10)
≃ 2, 05.

Sur les calculatrices, log10 est souvent noté log.

Remarque

les logarithmes de base a > 0, donc en particulier le logarithme décimal (log10), ont les mêmes propriétés
que ln, donc étant donnés deux nombres réels x > 0 et y > 0 on a :

☞ loga(x× y) = loga(x) + loga(y)

☞ loga

(
1

y

)
= − loga(y)

☞ loga(x
y) = y loga(x)

☞ loga

(
x

y

)
= loga(x)− loga(y)

Propriété
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Exemple no 5 : Calcule à la main les nombres suivants :

� log
(
1010

)
× log

(
10−5

)
= 10 × (−5) = −50

� log(300)− log(3) = log

(
300

3

)
= log(100) = 2

� log(40) + log(80)− log(32) = log

(
40 × 80

32

)
= log

(
3200

32

)
= log(100) = 2

� log
(
107,78

)
= 7, 78

� 10log(8,1) = 8, 1 car x 7→ ax et loga se neutralisent comme eln(x) = x

Exemple no 6 : Résous

1. 3x + 12 = 2199 on a :3x = 2187 donc x =
ln(2187)

ln(3)
= 7

(
=

log(2187)

log(3)

)

2. x5 = 759375 on a : log
(
x5
)
= 5 log(x) = log(759375) donc log(x) =

log(759375)

5

x = 10
log(759375)

5 = 15

3. 5x = 1000 on a : log5

(
5x
)
= x log5(5) = x × 1 = log5(1000) ≃ 4, 29

8. Intensité sonore en décibels.

L'oreille humaine a deux caractéristiques qui rendent l'échelle linéaire de l'intensité I peu pratique :

☞ Plage dynamique immense : L'intensité sonore que l'oreille peut percevoir s'étend sur une plage gigantesque,
allant de 10−12 W/m2 (seuil d'audition) à environ 1 W/m2 (seuil de douleur), soit un facteur de 1012 (mille
milliards).

☞ Sensibilité logarithmique : La perception du volume par l'oreille n'est pas linéaire. Pour qu'un son paraisse
deux fois plus fort, son intensité doit être multipliée par environ dix.

Pour gérer cette énorme plage et re�éter la façon dont nous percevons le son, on utilise une échelle qui "compresse"
cette plage : l'échelle logarithmique.

Le niveau d'intensité sonore, noté LI ou SIL (Sound Intensity Level), est dé�ni à l'aide de l'intensité
sonore I mesurée et d'une intensité de référence I0 :

LI = 10 log10

(
I

I0

)
où I0 = 10−12 W/m2

Son unité, sans dimension physique, est le décibel, noté dB.

Dé�nition:
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Le décibel (dB) est basé sur le Bel (B), une unité trop grande pour un usage courant. Le décibel est

simplement le dixième du Bel :LI (en Bels) = log10

(
I
I0

)
.

Remarque

A Le Seuil d'audition I = I0 = 10−12W/m2 correspond à LI = 10 log10

(
I0
I0

)
= 10 log10(1) = 0 dB

B Le Seuil de Douleur I = 1W/m2 correspond à LI = 10 log10

(
1

10−12

)
= 10 log10(10

12)

= 10 × 12 = 120 dB

C 10 log10

(
2I

I0

)
= 10 log10

(
2 ×

I

I0

)
= 10 log10(2) + 10 log10

(
I

I0

)
≃ 3.01 + 10 log10

(
I

I0

)
:

Multiplier l'intensité sonore par 2 revient à ajouter 3 dB.

9. Les décibels pondéré (A).

L'oreille humaine n'entend pas toutes les fréquences avec la même intensité. Nous sommes très sensibles aux
sons médiums et aigus (comme la voix humaine ou les cris), mais nous entendons beaucoup moins bien les sons
très graves (basses fréquences).

c'est l'unité de référence pour :

� La santé publique : Évaluer la gêne réelle ou le risque de perte auditive ;

� La réglementation : Les lois sur le bruit routier ou le voisinage sont presque toujours exprimées en dB(A).

Niveau sonore Exemple concret Ressenti humain

0 - 20 dB(A) Désert, chuchotement, respiration Très calme

30 - 40 dB(A) Bibliothèque, chambre la nuit Calme

50 - 60 dB(A) Lave-vaisselle, pluie modérée Supportable

65 dB(A) Conversation, voiture à 10m Bruit courant

75 - 85 dB(A) Aspirateur, rue passante Fatigant

90 - 100 dB(A) Tondeuse à gazon, klaxon Dangereux

120+ dB(A) Avion au décollage Douleur

Le fonctionnement du �ltre "A" : des pondérations agissent comme un égaliseur qui "nettoie" le signal
physique pour qu'il ressemble à ce que l'humain entend. Mathématiquement, on applique une correction en
décibels selon la fréquence (f) :

� A 20 Hz (très grave) : Le �ltre retire environ 50 dB.

� A 1000 Hz : La correction est de 0 dB. C'est le point de référence.

� A 3000 Hz : Le �ltre ajoute environ 1,2 dB.

Nous appliquerions pas ce �ltre dans cette �che.

Remarque
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10. Pression acoustique en décibels.

Le niveau sonore basé sur la pression est appelé Niveau de Pression Acoustique (Lp ou SPL, Sound Pressure
Level). Il est dé�ni par la formule suivante :

Lp = 20 log10

(
p

p0

)
(en dB)

où

� p est l'amplitude de pression acoustique mesurée (en Pascals, Pa).

� p0 est l'amplitude de pression de référence, qui correspond au seuil d'audition humain (à 1 kHz) :

p0 ≃ 20 µPa = 2× 10−5 Pa

Exercice no 1 :Démontre que
p2

p20
= 10Lp/10

Lp = 20 log10

(
p

p0

)
= 10 log10

(
p2

p20

)
donc

Lp

10
= log10

(
p2

p20

)
soit 10Lp/10 =

p2

p20

11. Sommes des intensités.

Lorsque deux sources sonores S1 et S2 fonctionnent simultanément, la pression acoustique instantanée totale
ptotal(t) en un point est la somme algébrique des pressions instantanées de chaque source : ptotal(t) = p1(t)+p2(t).

Par dé�nition, la pression e�cace totale est pe�,total =

√
1

T

∫ T

0
ptotal(t)2dt. Donc,

p2e�,total =
1

T

∫ T

0
(p1(t) + p2(t))

2 dt

=
1

T

∫ T

0
p1(t)

2dt+
1

T

∫ T

0
p2(t)

2dt+
2

T

∫ T

0
p1(t)p2(t)dt︸ ︷︷ ︸

terme de corrélation (ou d(interférence)

Deux sources sont dites incohérentes (ou non corrélées) si elles sont indépendantes et n'ont pas de relation de
phase �xe (par exemple, deux voitures, deux machines di�érentes, un moteur et une conversation).Dans ce cas,
sur une longue période (T ), le produit des deux pressions instantanées (p1(t)p2(t)) sera alternativement positif
et négatif, s'annulant en moyenne.

Si S1 et S2 sont incohérentes ⇒ 1

T

∫ T

0
p1(t)p2(t)dt ≈ 0

Et l'équation se simpli�e à : p2e�,total = p2e�,1 + p2e�,2.

Explication : Si p1(t) est un bruit aléatoire, et p2(t) est un autre bruit aléatoire indépendant, le produit
p1(t)p2(t) prendra des valeurs aléatoirement positives et négatives. L'intégrale sur une période d'intégration T
su�samment longue (quelques secondes, comme le fait l'oreille ou un sonomètre), tend vers zéro.

Même si deux sources produisaient des ondes harmoniques (comme un bruit de moteur dominé par une
certaine fréquence) :

� Décalage de Fréquence : Si les fréquences sont légèrement di�érentes (ce qui est toujours le cas
dans la réalité), l'une des ondes va "glisser" par rapport à l'autre. Le déphasage évoluera de 0 à

Remarque
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2π constamment. Sur une longue durée, toutes les relations de phase (constructives et destructives)
seront présentes, et la moyenne du terme de corrélation s'annulera.

� Décalage de Trajet : La phase acoustique est extrêmement sensible à la distance. Un décalage d'une
demi-longueur d'onde su�t à passer d'une interférence constructive à destructive.

Dans un environnement réel, les ré�exions, les trajets multiples et le mouvement de l'air font que la
phase reçue de deux sources distinctes varie constamment et de manière imprévisible, annulant ainsi
la corrélation en moyenne.

L'addition de sons en décibels (dB) n'est pas une simple somme arithmétique, car l'échelle des décibels est
logarithmique, basée sur le rapport des puissances ou des intensités sonores.

Pour obtenir le niveau sonore total (Ltotal) de plusieurs sources (L1, L2, . . . , Ln) non corrélées, on utilise
la formule suivante de sommation logarithmique :

Ltotal = 10 · log10
(
10L1/10 + 10L2/10 + · · ·+ 10Ln/10

)
où

� Ltotal est le niveau sonore total résultant en dB ;

� L1, L2, . . . , Ln sont les niveaux sonores individuels en dB ;

� 10L/10 représente l'intensité acoustique.

Propriété

Pour deux sources sonores S1 et S2 incohérentes, l'énergie (l'intensité) est additive. L'intensité totale (Itotal)
est la somme des intensités individuelles (I1 et I2), ce qui se traduit par l'addition des carrés des pressions
e�caces :

p2total = p21 + p22 donc
p2total
p20

=
p21
p20

+
p22
p20

D'après le résultat de l'exercice précédent : 10Ltotal/10 = 10L1/10 + 10L2/10

Pour isoler Ltotal, nous prenons le logarithme de base 10 de chaque côté :

log10

(
10Ltotal/10

)
= log10

(
10L1/10 + 10L2/10

)
Ltotal

10
= log10

(
10L1/10 + 10L2/10

)
Ltotal = 10 · log10

(
10L1/10 + 10L2/10

)

Démonstration

Exemple no 7 : Deux sources sonores de 75 dB chacune donnent un niveau total de :

Ltotal = 10 · log10

(
1075/10 + 1075/10

)
= 10 · log10

(
2 · 107.5

)
= 10 · (log10(2) + 7.5)

≈ 10 · (0.301 + 7.5) ≈ 78.01 dB.
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le niveau sonore total de deux sons de niveaux identiques, est celui du premier son augmenté de 3dB.

Propriété : Règle Pratique :

VI. Acoustique des lieux.

1. Ré�exion

La ré�exion acoustique est le rebond d'une onde sonore sur une surface. C'est l'analogue de la ré�exion de la
lumière sur un miroir. Un rayon sonore se ré�échit sur un obstacle lorsque la longueur d'onde λ est très inférieure
à la dimension D de cet obstacle λ ≪ D :

î r̂

Rayon incident
λ ≪ D

Rayon ré�échi
r̂ = î

D

En réalité,une partie de l'énergie sonore est absorbée par l'obstacle et seule la partie restante est ré�échie.

Remarque

2. Di�raction à travers un trou .

La di�raction est la capacité d'une onde à contourner un obstacle ou à s'étaler après avoir traversé une ouverture.

Lorsqu'une onde sonore rencontre un trou, si sa longueur d'onde λ ≫ D, alors elle se propage dans de multiples
directions à partir de l'ouverture, comme si le trou était devenu une nouvelle source sonore, sinon elle continue
simplement en ligne droite.

D

Rayon sonsore
entrant
λ ≫ D

Pour le son, les longueurs d'onde audibles (λ) sont beaucoup plus grandes que celles de la lumière visible, ce qui
explique pourquoi nous observons la di�raction sonore plus facilement dans la vie courante :

Fréquence (f)
Longueur
d'onde (λ)

Commentaire

Basses Fréquences
(100 Hz)

≈ 3, 4 m
Se di�racte facilement autour
d'une porte.

Hautes Fréquences
(10 000 Hz)

≈ 3, 4 cm
Di�cile à di�racter par une
porte. La di�raction est négli-
geable.
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3. Di�usion.

Lorsqu'un rayon sonore incident, de longueur d'onde λ rencontre une surface présentant des irrégularités de
dimension D ≈ λ, il se produit un phénomène de di�usion qui conduit à un éclatement, dans toutes les
directions, de l'onde plane associée au rayon sonore incident.

D

di
�u
si
on

di�usion

Rayons

incidents

4. Zone d'ombre.

Quand une onde sonore de longueur d'onde λ rencontre un obstacle présentant une dimension D ≫ λ, il se
produit un phénomène de zone d'ombre acoustique derrière cet obstacle.

D

source

sonore

zone

d'ombre

5. Le Nombre de Fresnel pour un Obstacle (N)

Lorsqu'on parle d'un obstacle (comme un mur antibruit ou un pilier), le nombre de Fresnel (N) est un indicateur
de l'e�cacité de l'écran et de la profondeur de la zone d'ombre. En acoustique environnementale (méthode de
Maekawa), on utilise une dé�nition spéci�que basée sur la di�érence de trajet.

on calcule N à partir de la "déviation" que le son doit e�ectuer pour contourner l'obstacle :N = 2δ
λ où

☞ δ est la di�érence de marche (en mètres). C'est la di�érence entre le trajet le plus court passant au-dessus
de l'obstacle et le trajet direct théorique à travers l'obstacle :

δ = (dsource→sommet + dsommet→recepteur)− dsource→recepteur

☞ λ est la longueur d'onde du son.

Le nombre de Fresnel permet de prédire le silence (l'atténuation) derrière l'obstacle. Plus N est grand, plus la
zone d'ombre est "profonde" (silencieuse).

☞ Si N > 0 : Le récepteur est dans la zone d'ombre géométrique. Le son est atténué car il doit se di�racter
sur le bord.

☞ Si N ≈ 0 : Le récepteur est sur la ligne de visée du bord de l'obstacle. L'atténuation est d'environ 5 dB.
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☞ Si N < 0 : Le récepteur "voit" la source. On est en zone éclairée, mais il reste une légère atténuation due
à la proximité du bord (zone de transition).

Exemple no 8 : Pourquoi les sons graves "percent" l'ombre ?

Type de son
Longueur
d'onde (λ)

Nombre de
Fresnel (N)

Résultat

Grave (Basse)
Grande (ex : 3

m)
Petit N

Faible atténuation. Le son �épou-
se� le bord et pénètre loin dans la
zone d'ombre.

Aigu (Haut)
Petite (ex :
0,03 m)

Grand N
Forte atténuation. Le son est blo-
qué, la zone d'ombre est très mar-
quée.

L'atténuation apportée par un écran (en dB) peut être estimée par la formule simpli�ée de Maekawa :

AdB = 10 log10(20N + 5)

Calcul de l'atténuation (A)

Exemple no 9 : Etudions l'e�cacité d'un écran antibruit. Dans cet exemple, on considère une onde sonore
d'une fréquence de 1 000 Hz se déplaçant à la vitesse de 343m/s.

1. SE =
√

72 + 2, 32 ≃ 7, 37 ER =
√
252 + 1, 32 ≃ 25, 03 SR =

√
322 + 12 ≃ 32, 02

2. La di�érence de marche est : δ = (dsource→sommet + dsommet→recepteur)− dsource→recepteur

δ = (SE + ER)− SR = (7, 37 + 25, 03)− 30, 02 = 0, 38

3. La longueur d'onde est λ = cT =
c

f
=

343

1000
= 0, 343 m

4. Le nombre de Fresnel est N =
2δ

λ
=

2× 0, 38

0, 343
≃ 2, 22

5. Déterminer l'e�cacité du mur : 10 log10(20N + 5) ≃ 16, 9 dB
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