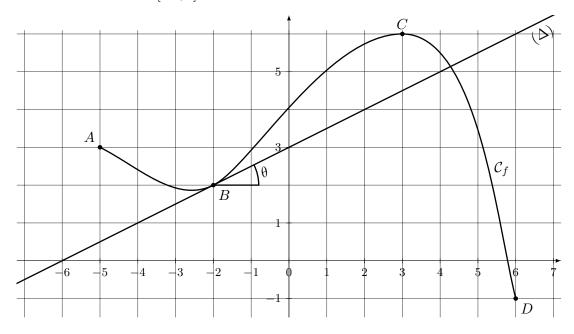


Mathématiques pour le technicien 1

TD d'algèbre no 1 - Semestre 2Nombres dérivées et limites. Année 2023-2024

Exercice n° 1: On donne ci-dessous la courbe représentative dans un repère orthonormé d'une fonction f définie et dérivable sur l'intervalle [-5,6].



On sait que la droite (Δ) est tangente à \mathcal{C}_f en B.

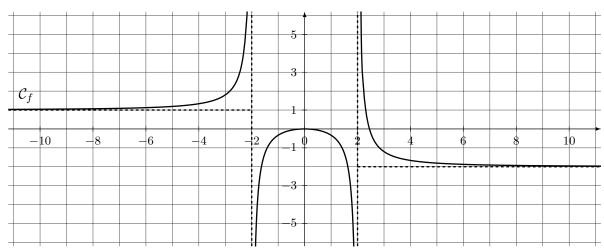
- 1. Donne la valeur de f(-5) puis le signe de f'(-5).
- 2. Donne la valeur de f(6) puis le signe de f'(6).
- 3. Donne la valeur de f(-2) puis de f'(-2).
- 4. Déduis-en la mesure principale en degré de l'angle θ .
- 5. Détermine l'équation réduite de la droite (Δ) .
- 6. Construis le tableau de signes de la dérivée f' de f.
- 7. Donne la valeur de f(3) puis de f'(3).
- 8. Détermine graphiquement les solutions de l'équation f(x) = 3.
- 9. Détermine graphiquement les solutions de l'inéquation $f(x) \ge 5$.

Exercice n° 2: Pour chacune des courbes représentatives suivantes :

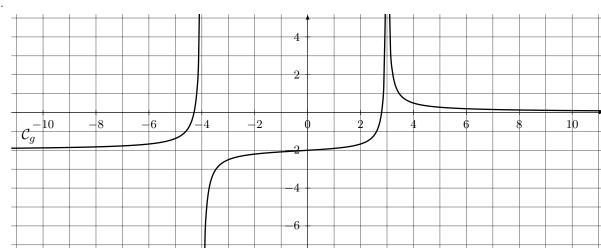
- i. Détermine l'ensemble de définition de la fonction associée.
- ii. Détermine les limites aux bornes de cet ensemble.

- iii. Détermine une équation pour chaque éventuelle asymptote.
- iv. Construis le tableau de signes de la fonction.
- v. Construis le tableau de variations de la fonction.

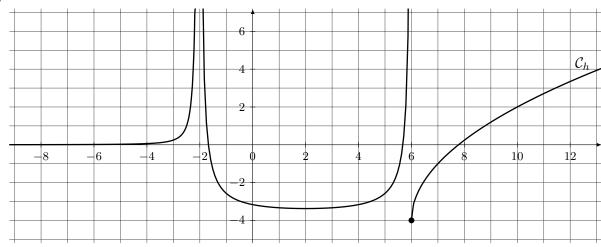
1.



2.



3.



Exercice nº 3: Calcule les limites suivantes :

1.
$$\lim_{x \to -\infty} \frac{4}{x}$$

$$2. \lim_{x \to -\infty} \frac{7}{x^2}$$

$$3. \lim_{x \to +\infty} \frac{-3}{x^2 - 5}$$

4.
$$\lim_{x \to -\infty} \ln\left(x^2\right)$$

$$5. \lim_{x \to -\infty} x^2 - 3x$$

$$6. \lim_{\substack{x \to 0 \\ x < 0}} \frac{4}{x}$$

$$7. \lim_{\substack{x \to 0 \\ x > 0}} \frac{4}{x}$$

8.
$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{4}{x^2}$$

$$9. \lim_{\substack{x \to 0 \\ x > 0}} x^3 \ln(x)$$

10.
$$\lim_{x \to +\infty} \ln \left(\frac{7}{x^2} \right)$$

11.
$$\lim_{x \to +\infty} x^4 e^{-x}$$

$$12. \lim_{x \to +\infty} x^2 e^{3/x}$$

13.
$$\lim_{x \to -\infty} \frac{e^{x^2}}{x^3}$$

$$14. \lim_{x \to -\infty} x^3 - x^2$$

15.
$$\lim_{x \to +\infty} x^3 - x^2$$

$$16. \lim_{x \to +\infty} \frac{e^x}{x^2 - x^3}$$

17.
$$\lim_{x \to +\infty} x \ln\left(\frac{2}{x}\right)$$

18.
$$\lim_{x \to +\infty} \frac{\ln(x)}{x}$$

19.
$$\lim_{x \to +\infty} \frac{x^2 - x^4 + 2}{x - 278 + 2x^4}$$

20.
$$\lim_{x \to +\infty} \frac{x^3 - 3x}{x^4 - 5x + \frac{1}{2}}$$

21.
$$\lim_{\substack{x \to 0 \\ x < 0}} x^3 \ln(x^4)$$

22.
$$\lim_{x \to +\infty} \frac{x^6 - x^7}{x^4 + 23}$$

23.
$$\lim_{x \to -\infty} \frac{x^3 - 3x^4}{x^4 - 5x^5}$$

24.
$$\lim_{x \to -\infty} \frac{x^2 - 254}{x^4 - 7x^2}$$

17.
$$\lim_{x \to +\infty} x \ln\left(\frac{2}{x}\right)$$
 25.
$$\lim_{x \to +\infty} \frac{x^3}{5 - x + 2x^2}$$

26.
$$\lim_{x \to 1} \frac{x^3 - x^2}{x + 2}$$

27.
$$\lim_{x \to +\infty} \exp\left(\frac{x - 5x^3}{x + x^2}\right)$$

28.
$$\lim_{x \to +\infty} \frac{-2}{x^2} \exp\left(\frac{x+5x^4}{x^3+6x}\right)$$

$$29. \lim_{x \to +\infty} \frac{\ln\left(x^3 - x^2\right)}{x^2 - 4x}$$

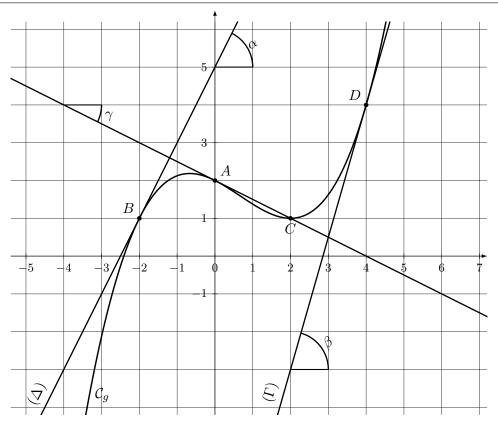
$$30. \lim_{x \to -\infty} \ln \left(\frac{x^2 + 1}{x^2 + 5} \right)$$

31.
$$\lim_{x \to +\infty} \ln \left(\frac{x+1}{x^2+5} \right) e^{-x}$$

Mathématiques pour le technicien 1

TD d'algèbre nº 2 - Semestre 2 Etude de fonctions Année 2023-2024

Exercice nº 1: On donne ci-dessous la courbe représentative dans un repère orthonormé d'une fonction qdéfinie et dérivable sur \mathbb{R} .



Les droites (AC), (Δ) , et (Γ) sont respectivement tangentes à la courbe représentative \mathcal{C}_g de la fonction g aux points A, B, et D.

- 1. Détermine, graphiquement, l'équation réduite des droites (Δ) , et (Γ) .
- 2. Détermine par le calcul, le coefficient directeur de la droite (AC), puis son équation réduite.
- 3. Détermine g'(-2), g'(0), g'(4), et g'(2).
- 4. Démontre que les droites (AC) et (Δ) sont perpendiculaires.
- 5. Calcule la mesure principale des angles α , β , et γ en degrés au dixième de degré près.

Exercice n° 2: On considère la fonction f définie par $f(x) = e^{\frac{0.5}{x}}$. On note \mathcal{C}_f sa courbe représentative.

- 1. Détermine le domaine de définition de la fonction f.
- 2. Calcule les limites de la fonction f aux bornes de son intervalle de définition
- 3. Détermine la fonction dérivée f' de la fonction f.
- 4. Etudie le signe de la dérivée de f et déduis-en son tableau de variations.
- 5. Calcule la limite de la dérivée f' lorsque x tend vers 0^- .
- 6. Construis la courbe représentative de \mathcal{C}_f .

Exercice nº 3: Pour chacune des fonctions suivantes :

- i. Détermine son domaine de définition.
- ii. Calcul les limites aux bornes de ce domaine.
- iii. Calcule sa dérivée.

1.
$$f(x) = 4x^3 - 7x^2 + \frac{4}{3}x - \sqrt{2}$$
.

2.
$$g(x) = \sqrt{3x - 2}$$

3.
$$h(x) = \sqrt{21 - x^2 + 4x}$$

4.
$$j(x) = \frac{4-x}{3x^2 - x + 5}$$

5.
$$k(x) = \frac{4x - 3}{2x^2 - 8}$$

6.
$$p(x) = \ln(-x^2 + x + 30)$$

Mathématiques pour le technicien 1

TD d'algèbre nº 3 - Semestre 2 Calcul des primitives usuelles. Année 2023-2024

Exercice nº 1: On considère la fonction f définie sur \mathbb{R} par $f(x) = 3x^2 + 2x + 1$.

- 1. Détermine toutes les primitives de f.
- 2. Pourquoi $H(x) = x^3 + x^2 + x 27$ est une primitive de f?
- 3. Détermine la primitive de f qui en x = 1 est égale à 2.
- 4. Calcule $G(x) = \int_1^x f(t) dt$.
- 5. La fonction G(x) est-elle une primitive de f?
- 6. Calcule G(1).
- 7. Que peut-on dire de $\int_1^x f(t) dt$?

Exercice nº 2: Soit $f: x \longmapsto x^3 + 2x - 1$.

- 1. Détermine une primitive de f.
- 2. Détermine la primitive qui s'annule pour x=-1.

Exercice nº 3: La fonction F est définie sur $]0 + \infty[$. On sait que sa dérivée $F'(x) = \frac{2}{x}$ et que F(e) = 3. Détermine la fonction F.

5

Exercice n° 4: Détermine les primitives suivantes :

MAT1: Analyse

$$1. \int t e^{-t^2} dt$$

9.
$$\int \frac{t^2}{\sqrt{5+t^3}} \, \mathrm{d}t$$

16.
$$\int \frac{e^t dt}{\sqrt{e^t - 1}}$$

$$2. \int 5t^2 e^{t^3 - 1} dt$$

10.
$$\int \frac{4t}{(t^2-1)^3} dt$$

17.
$$\int \frac{3}{t-1} \, \mathrm{d}t$$

3.
$$\int \sin^5(t)\cos(t)\,\mathrm{d}t$$

11.
$$\int \frac{t^3 + 1}{(t^4 + 4t + 1)^2} \, \mathrm{d}t$$

$$\int \frac{1}{t-1} dt$$

$$4. \int \frac{3t \, \mathrm{d}t}{\sqrt{t^2 + 3}}$$

11.
$$\int \frac{t^3 + 1}{(t^4 + 4t + 1)^2} \, \mathrm{d}t$$

$$18. \int \frac{4}{3t+2} \, \mathrm{d}t$$

5.
$$\int \cos^5(t) \sin(t) \, \mathrm{d}t$$

12.
$$\int \tan(t) dt$$

$$19. \int \frac{\ln t}{t} \, \mathrm{d}t$$

6.
$$\int (t^4 + 4t^3 - 1)^5 (2t^3 + 6t^2) dt$$

13.
$$\int \frac{\mathrm{d}t}{\sqrt{t+1}}$$

$$20. \int \left(\frac{3}{t-1} + \sqrt{t+1}\right) dt$$

7.
$$\int \frac{e^{\sqrt{t}}}{\sqrt{t}} dt$$

14.
$$\int \sqrt{t+1} \, \mathrm{d}t$$

$$21. \int \frac{\mathrm{d}t}{t \ln^2(t)}$$

8.
$$\int (t+1)^2(t-3) dt$$

15.
$$\int t\sqrt{t^2+1}\,\mathrm{d}t$$

$$22. \int \frac{\mathrm{d}t}{t \ln(t)}$$

Exercice nº 5:

1. Calcule
$$\int \cos(t) \sin^2(t) dt$$
.

2. Déduis-en
$$\int \cos^3(t) dt$$
.

Exercice nº 6: Calcule

$$1. \int_2^e \frac{\mathrm{d}x}{x \ln(x)}$$

2.
$$\int_0^{\frac{\pi}{4}} \frac{e^{\tan(x)}}{\cos^2(x)} dx$$

3.
$$\int_0^{\frac{\pi}{4}} \tan^2(x) dx$$

Mathématiques pour le technicien 1

TD d'algèbre nº 4 - Semestre 2 Intégration par parties. Année 2023-2024

Exercice nº 1: Calcule $\int_0^{\pi} x \sin(x) dx$

Exercice nº 2:

1. Calcule
$$\int_{-\pi}^{\pi} x \cos(x) dx$$

2. Quelle propriété de la fonction f conduit à ce résultat?

Exercice nº 3:

1. Détermine $\int xe^x dx$

2. Déduis-en $\int x^2 e^x dx$

3. Déduis-en $\int x^3 e^x dx$

4. Déduis-en $\int (x^2 - 3x + 1)e^x dx$

Exercice n° 4: Déduis de l'exercice précédent une primitive de $f(x) = (x^2 - 4x)e^{-2x}$ Exercice nº 5:

1. En n'oubliant pas qu'on omet les articles indéfinis en mathématique, détermine :

(a) $\int \ln(x) dx$

(b) $\int \arctan(x) dx$

2. Déduis-en deux façons de calculer $\int \ln^2(x) dx$.

Mathématiques pour le technicien 1

TD d'algèbre n° 5 - Semestre 2 Intégration des fractions rationnelles. Année 2023-2024

Intégration des fonctions homographiques.

Exercice n° 1: Démontre que si $c \neq 0$ alors $\int \frac{\mathrm{d}x}{cx+d} = \frac{1}{c} \ln |cx+d|$

Méthode d'intégration de $f(x) = \frac{ax+b}{cx+d}$ où $c \neq 0$

Il existe deux réels A et B tels que $\frac{ax+b}{cx+d}=A+\frac{B}{cx+d}$. Il suffit ensuite de se souvenir que $\int \frac{\mathrm{d}x}{cx+d}=\frac{1}{c}\ln\left|cx+d\right|$

Exercice n° 2: Détermine les primitives suivantes :

$$1. \int \frac{x+3}{x+1} \, \mathrm{d}x$$

$$2. \int \frac{x+3}{x-1} \, \mathrm{d}x$$

$$3. \int \frac{2x-3}{x+2} \, \mathrm{d}x$$

$$4. \int \frac{4x - 5}{2x - 1} \, \mathrm{d}x$$

1.
$$\int \frac{x+3}{x+1} dx$$
 2. $\int \frac{x+3}{x-1} dx$ 3. $\int \frac{2x-3}{x+2} dx$ 4. $\int \frac{4x-5}{2x-1} dx$ 5. $\int \frac{7-6x}{3x+1} dx$

fMéthode d'intégration de $f(x)=rac{lpha x+eta}{ax^2+bx+c}$ où a
eq 0

On calcule le discriminant Δ du dénominateur $ax^2 + bx + c$.

- Si $(\Delta > 0)$: $ax^2 + bx + c$ a deux racines réelles distinctes r_1 et r_2 , et il existe alors deux réels A et B tels que $f(x) = \frac{A}{x r_1} + \frac{B}{x r_2}$.
- Si $(\Delta = 0)$: $ax^2 + bx + c$ a une racine réelle r, et il existe alors deux réels A et B tels que $f(x) = \frac{A}{(x-r)^2} + \frac{B}{x-r}.$

Il suffit ensuite de se souvenir que $\int \frac{\mathrm{d}x}{x-r} \, \mathrm{d}x = \ln \left|x-r\right|$ et $\int \frac{\mathrm{d}x}{(x-r)^2} \, \mathrm{d}x = \frac{-1}{x-r}$

Exercice n° 3: Détermine une primitive des fonctions suivantes :

1.
$$f(x) = \frac{-2x+5}{x^2-2x+1}$$

4.
$$i(x) = \frac{x-5}{x^2-6x+9}$$

7.
$$\ell(x) = \frac{5}{(2x+3)(x-1)}$$

2.
$$g(x) = \frac{x+7}{x^2+4x+4}$$

$$5. \ j(x) = \frac{6x + 35}{x^2 + 5x}$$

8.
$$m(x) = \frac{6}{x^2 - 3}$$

3.
$$h(x) = \frac{6x - 2}{x^2 - 2x - 3}$$

6.
$$k(x) = \frac{10x - 8}{x^2 - 3x - 10}$$

Mathématiques pour le technicien 1

TD d'algèbre n° 6 - Semestre 2 Intégration par changement de variable. Année 2023-2024

Exercice n° 1: Pour déterminer une primitive des fonctions suivantes, on fera le changement de variable proposé :

1.
$$f(x) = \frac{1}{2 - e^{-x}}$$
 on pose $u(x) = e^x$.

3.
$$h(x) = \frac{1}{2 + \sqrt{x}}$$
 on pose $u(x) = \sqrt{x}$.

2.
$$g(x) = \frac{1}{x \ln(x)}$$
 on pose $u(x) = \ln(x)$.

4.
$$i(x) = \frac{1}{4+x^2}$$
 on pose $x(u) = 2\tan(u)$.

Exercice n° 2 (★):

- 1. Détermine une primitive de $\frac{1}{(1-x^2)^{3/2}}$ en posant $x = \sin(u)$.
- 2. Déduis-en que $\int \frac{dx}{(1-x^2)^{3/2}} = \frac{x}{\sqrt{1-x^2}}$.

Exercice nº 3:

1. En utilisant la formule d'addition de $\cos(a+b)$ démontre que $\cos^2(a) = \frac{1+\cos(2a)}{2}$.

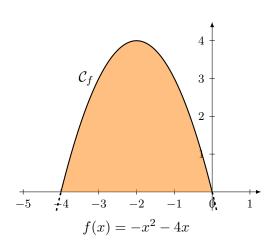
2. Déduis-en $\int_0^{\frac{\pi}{2}} \cos^2(x) dx$

Mathématiques pour le technicien 1

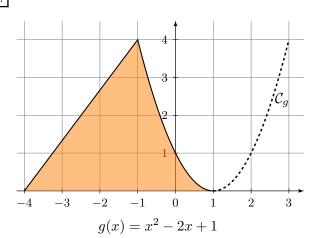
TD d'algèbre nº 7 - Semestre 2 Application géométrique du calcul intégral. Année 2023-2024

Exercice n° 1: Pour chacune des figures, détermine l'aire colorée \mathcal{A} .

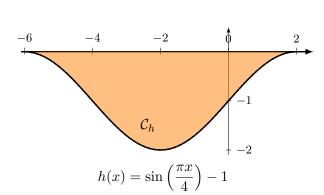
1.



2.

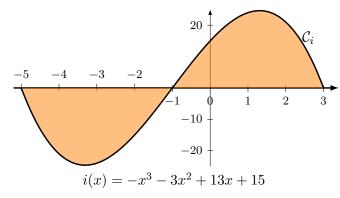


3.

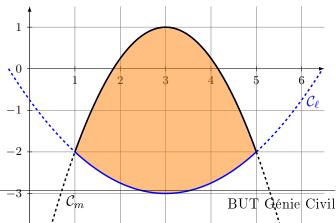


4.

9

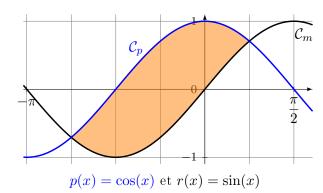


5.

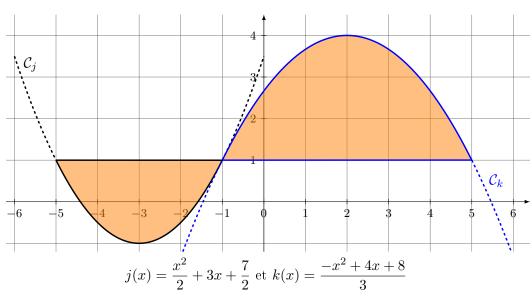


P. DROUOT

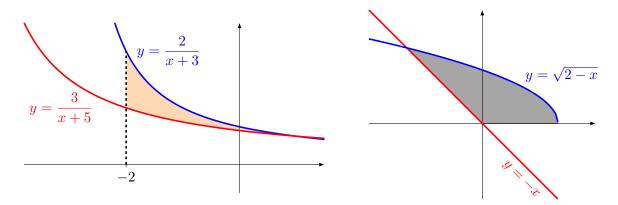
$$\ell(x) = \frac{x^2 - 6x - 3}{4}$$
 et $m(x) = \frac{-3x^2 + 18x - 23}{4}$



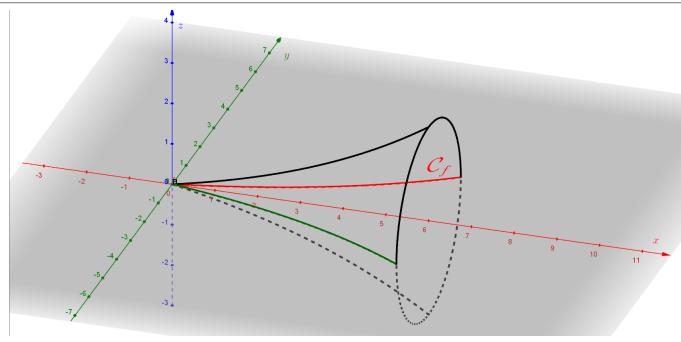
7.



Exercice nº 2: Calcule les aires suivantes :



Exercice n° 3: On considère la fonction définie par $f(x) = e^{0.2x} - 1$ sur l'intervalle [0; 6].

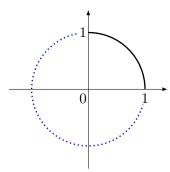


Détermine le volume de la surface de révolution obtenue en faisant tourner C_f autour de l'axe des abscisses.

Exercice n° 4: Calcule la longueur de l'arc de parabole défini par la fonction $f\colon \begin{bmatrix} 0\,,\,2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0\,,\,4 \end{bmatrix}$ $x \longmapsto x^2$

<u>Indication</u>: on pourra utiliser le changement de variable $x = \frac{1}{2} \tan(u)$.

Exercice n° 5 (\star): On considère le quart de cercle de rayon 1 suivant :

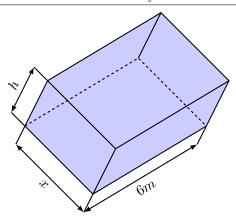


- 1. Démontre que ce quart de cercle est la courbe représentative de la fonction f définie sur [0;1] par $f(x)=\sqrt{1-x^2}$
- 2. En faisant le changement de variable $x(u) = \sin(u)$ démontre que l'aire du cercle est π .
- 3. Démontre que la longueur de C_f est $\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2}}$.
- 4. Déduis-en la circonférence du cercle.

Mathématiques pour le technicien 1

TD d'algèbre n° 8 - Semestre 2 Mise en situation n° 1. Année 2023-2024

Exercice n° 1: On se propose de fabriquer avec le moins de tôle possible un conteneur en forme de parallélépipède rectangle dont le volume intérieur est 37,5m³ :



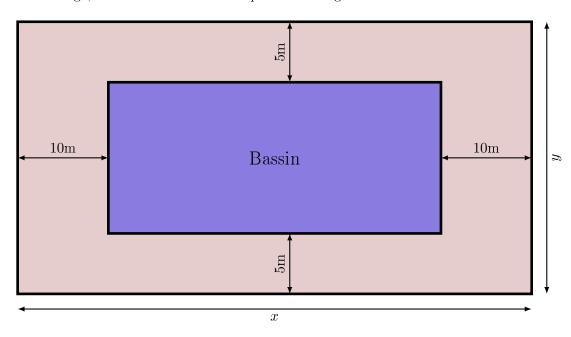
- 1. Quel est le volume V(x,h) du parallélépipède?
- 2. Démontre que l'aire totale du conteneur (c'est-à-dire la somme des aires des six faces) s'écrit en fonction de x:

$$S(x) = 12x + 12, 5 + \frac{75}{x}$$

3. Détermine les valeurs de x et de h pour lesquelles l'aire est minimale.

Exercice n° 2: On considère la fonction f définie sur [20; 180] par $f(x) = -10x - \frac{36000}{x} + 2000$.

- 1. Etude de la fonction f:
 - a. Détermine la fonction dérivée f' de f.
 - b. Etudie le signe de f' et construis le tableau de variations de f.
 - c. Place dans le tableau de variations de f les solutions de l'équation f(x) = 600.
 - d. Résous l'équation f(x) = 600. On donnera des valeurs approchées au dixième près.
- 2. On se propose d'utiliser 1800 m² de terrain pour construire une piscine constituée d'un bassin rectangulaire entouré d'un dallage, avec les dimensions indiquées sur la figure ci-dessous.

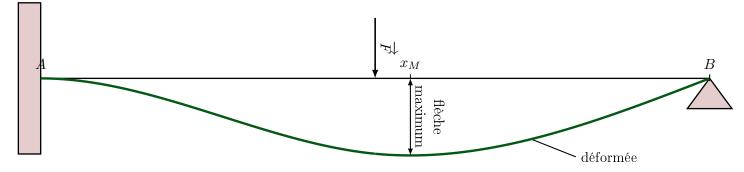


3. Détermine l'expression de y en fonction de x.

- 4. Démontre que x varie dans l'intervalle [20; 180].
- 5. On note S l'aire en m^2 du bassin.
 - a. Démontre que S(x) = f(x).
 - b. Déduis-en les dimensions x et y du terrain pour lesquelles l'aire du bassin est maximale.
- 6. On souhaite que le bassin ait une aire de 600 m^2 . Est-ce possible? Pour quelle(s) valeur(s) de x?

Exercice n° 3: La poutre ci-dessous, de 3 mètres de longueur, supporte une charge concentrée de norme 1 000 Newton en son milieu C. Elle est encastrée en A et repose sur un appui simple en B. Le points A et B sont situés sur l'axe des abscisses, et l'abscisse du point A est nulle.

Sauf mention contraire, tous les calculs seront arrondis à 10^{-3} près.



Sous l'action de la charge \overrightarrow{F} , la poutre se déforme. La déformée a pour équation :

$$w(x) = \begin{cases} w_1(x) = -2, 11 \times 10^{-3} \left(-11x^3 + 27x^2 \right) & \text{si } 0 \leqslant x \leqslant 1, 5 \\ w_2(x) = -2, 11 \times 10^{-3} \left(5(x-3)^3 - 27x + 81 \right) & \text{si } 1, 5 \leqslant x \leqslant 3 \end{cases}$$

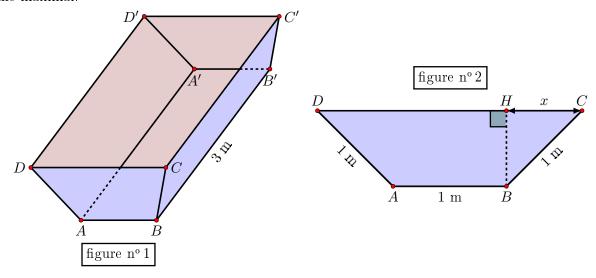
- 1. Etude de la fonction w:
 - a. Détermine la fonction dérivée w_1 , étudie son signe et dresse son tableau de variations.
 - b. Détermine la fonction dérivée w_2 , étudie son signe et dresse son tableau de variations.
 - c. Dresse le tableau de variations de la fonction w.
- 2. Déduis-en que la flèche maximum M se situe entre C et B. Quel vaut x_M ?
- 3. Donner une valeur approchée à 10^{-2} près de la flèche maximum.

Mathématiques pour le technicien 1

TD d'algèbre n° 9 - Semestre 2 Mise en situation n° 2 Année 2023-2024

Exercice n° 1: Une benne a la forme d'un prisme droit (les faces latérales sont des rectangles) dont la base est un trapèze isocèle ABCD. La longueur du côté [CD] est variable. Les autres dimensions sont fixes et indiquées sur la figure n° 1. La figure n° 2 représente la base ABCD du prisme. On désigne par x la longueur CH, où

H est le projeté orthogonal de B sur (CD). On se propose de déterminer x de façon à ce que la benne ait un volume maximal.



- 1. On considère la fonction f qui à x associe $\sqrt{1-x^2}$.
 - a. Détermine le domaine de définition de la fonction f
 - b. Détermine la dérivée de la fonction f
- 2. Calcule en fonction de x, l'aire S(x) du trapèze ABCD puis du volume V(x) de la benne.
- 3. Mathématiquement, sur quel domaine est définie la fonction V?
- 4. Physiquement, sur quel domaine est définie la fonction V?
- 5. Démontre que la dérivée V' de V est $V'(x) = \frac{-6x^2 3x + 3}{\sqrt{1 x^2}}$.
- 6. Déduis-en la valeur de x pour laquelle le volume de la benne est maximal. Quel est alors ce volume?

Exercice n° 2: Nicolas doit installer un collecteur d'eaux pluviales sur la façade d'une maison. On a représenté cette façade ci-dessous par le rectangle ABCD. L'eau de pluie, retenue par une gouttière [CD], passe par deux tuyaux obliques [CM] et [DM] puis par un tuyau vertical [MR] pour finir dans un réservoir R.

R est le milieu de [AB]; AB = 10m et BC = 6m. Soit H le projeté orthogonal de M sur (BC), θ la mesure principale en radians de l'angle \widehat{CMH} et $\ell = MC + MD + MR$.

Les trois tuyaux seront en cuivre, métal plutôt coûteux. Le but est donc de trouver la position du point M qui minimise la longueur totale ℓ de ces tuyaux.

Les longueurs, exprimées en mètres, seront arrondies au centimètre près, et les mesures angulaires en radians le seront au millième près.

- 0. Préliminaire:
 - a. Rappelle la formule d'addition du cosinus.
 - b. Calcule $\cos(x-x)$ et déduis-en une formule connue de trigonométrie.
- 1. Construis une figure schématisant l'énoncé.
- 2. Explique pourquoi le domaine de définition de θ est inclus dans l'intervalle $\left[0; \frac{\pi}{2}\right]$.
- 3. Démontre, à partir de la figure, que le domaine de définition de θ est l'intervalle [0; 0, 876].

- 4. Exprime MC et CH en fonction de θ .
- 5. Déduis-en MR en fonction de θ .
- 6. Déduis des questions précédentes $\ell(\theta)$.
- 7. Démontre que la dérivée ℓ' de ℓ est $\ell'(\theta) = \frac{-5 + 10\sin(\theta)}{\cos^2(\theta)}$.
- 8. Calcule $\ell'(0,2)$ et $\ell'(0,7)$ à 10^{-1} près.
- 9. Construis le tableau de variation de ℓ .
- 10. Déduis-en la valeur optimale de la longueur MR.