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I. Le gradient.

Pour donner une interprétation géométrique du gradient nous nous placerons systématiquement
dans un repére orthonormé de I'espace affine R™. Il s’en suivra que pour deux vecteurs
u1 v1

x = et U =

Up, Un,

w7 =
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I. Le gradient.
Définition:

Soit f : R™ — R une fonction admettant des dérivées partielles. Le gradient de f en
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Les physiciens et les anglo-saxons notent souvent V f(x) pour gradf(z). Le symbole V¥ se lit

« nabla ».
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I. Le gradient.

Propriété:

tgrad(f)(x) est la matrice jacobienne de la forme linéaire df(z).
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Propriété:
. . ces . - L. q 0
Etant donnée un fonction différentiable en = et A un vecteur de R™, la dérivée directionnelle]

de f suivant le vecteur T est df (x) - 7= ?f(:c) ‘R (produit scalaire).
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I. Le gradient.

Propriété:

Etant donnée un fonctlogdlfferentlablejn ret h un vi(;teur de R™, la dérivée directionnelle]
de f suivant le vecteur h est df(z) - h = ?f(m) - h (produit scalaire).

Exemple n°1 : Détermine les gradients de chacune des fonctions suivantes : f(z,y) = z3y?2,
g(z,y) = 273, h(z,y) = x2e7Y, k(x,y,2) = 22 cos(yz), et £(z,y, z) = 2% sin(y322)
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I. Le gradient.

Exemple n° 2 : Gradients d'une fonction f: R2 — R :

n

A i
1 1

Le vecteur tracé en vert est le gradient
de f au point (1,1).

Les vecteurs tracés en rose sont des

gradients de f.

(Lancer I’application.)
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I. Le gradient.

1. Lignes de niveau.

Définition:

Etant donnée une constante c. Une ligne de niveau (ou courbe de niveau) d’une fonction
de deux variables f(z,y) est I'ensemble de tous les points (z,y) du plan pour lesquels la
fonction prend la valeur constante c.

Le ={(z,y) € Dy | fz,y) =}
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I. Le gradient.

Exemple n° 3 : de lignes de niveau d'une fonction f: R?2 — R :

T

On a tracé en bleu la courbe de niveau On a tracé en bleu la courbe de niveau L1 57
Ly01. qui posséde deux composantes connexes.

(Lancer I'application.)
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I. Le gradient.

Remarque

L’ensemble des points (z,y, z) de I'espace pour lesquels la valeur de la fonction f(z,vy, 2)
est égale 3 une constante c est appelé une surface de niveau.

Par exemple, si f(z,y,z) représente la température a chaque point d'une piéce. Une
surface de niveau serait une "bulle" ou une paroi invisible reliant tous les points ou il fait
exactement la méme température. On appelle cela une isotherme.
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I. Le gradient.

Soit f : R2 — R une fonction différentiable. On considére les lignes de niveau f(x,y) = k.
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I. Le gradient.

Soit f : R2 — R une fonction différentiable. On considére les lignes de niveau f(x,y) = k.
Exemple n° 4 :

Sur la figure ci-contre, on considére la surface
définie par la fonction :

f: 00,32 — R

(La ncer I’application.)
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Sur la figure ci-contre, on considére la surface
définie par la fonction :

f: 10,32 — R
(z,y) — a2+ 42

(La ncer I’application.)
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I. Le gradient.

Soit f : R2 — R une fonction différentiable. On considére les lignes de niveau f(x,y) = k.
Exemple n° 4 :

Sur la figure ci-contre, on considére la surface
définie par la fonction :

f: 10,32 — R
(z,y) — a2+ 42

Dans le plan (Ozy) on a dessiner les lignes
de niveau de

° flzy) =1

(La ncer I’application.)
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I. Le gradient.

Soit f : R2 — R une fonction différentiable. On considére les lignes de niveau f(x,y) = k.

Exemple n° 4 :

(La ncer I’application.)

M. Drouot

Sur la figure ci-contre, on considére la surface
définie par la fonction :

f: 0,32 — R
(z,y) — 2® +¢°
Dans le plan (Ozy) on a dessiner les lignes
de niveau de
° flz,y)=1
° flz,y) =4
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I. Le gradient.

Soit f : R2 — R une fonction différentiable. On considére les lignes de niveau f(x,y) = k.
Exemple n° 4 :

A
‘ Sur la figure ci-contre, on considére la surface
157 définie par la fonction :
- e 2 = 15
- Ul J Fo032— R
3 et 2,2
K [((]IIJ/W ! 10+ (@y) — "ty
| ‘ L—9 Dans le plan (Ozy) on a dessiner les lignes
,\_;/ de niveau de
° flz,y)=1
o f(z,y)=4
o f(z,y) =9

(La ncer I’application.)
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I. Le gradient.

Soit f : R2 — R une fonction différentiable. On considére les lignes de niveau f(x,y) = k.
Exemple n° 4 :

A
‘ Sur la figure ci-contre, on considére la surface
157 définie par la fonction :
- pamm——m 5}
s By f: 00,32 — R
27 244

\
f W‘%/’l’ IL (z,y) — 2%+
l

‘ ‘ L—9 Dans le plan (Ozy) on a dessiner les lignes
,\_;/ de niveau de

|
l \?4 ! ° flz,y)=1
l\ h—/: : o flz,y)=4
1 ) [ o f(z,y) =9
| ] (z,y) =15
|

(La ncer I’application.)
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I. Le gradient.

Soit f : R2 — R une fonction différentiable. On considére les lignes de niveau f(x,y) = k.

Exemple n° 4 :

(La ncer I’application.)

M. Drouot

Sur la figure ci-contre, on considére la surface
définie par la fonction :

f: 10,32 — R
(z,y) — a2+ 42

Dans le plan (Ozy) on a dessiner les lignes
de niveau de

o f(z,y) =1
o f(z,y) =4
o f(z,y) =9

(z,y) =15

La ligne de niveau de f(z,y) = 9 correspond
aux points dont les coordonnées (x,y) sont
solutions de I'équation :

x2+y2:9
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I. Le gradient.

2. Tangentes aux lignes de niveau.

Propriété:
Dans un repére orthonormé, le vecteur gradient gradf(zo,yo) est orthogonal a la ligne de
niveau de f passant au point (zo, o).

M. Drouot CNAM - Algébre linéaire. 11 /22
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I. Le gradient.

Propriété:

Dans un repére orthonormé, le vecteur gradient gradf(zo,yo) est orthogonal a la ligne de
niveau de f passant au point (zg,yo).

‘ (Lancer I’application)
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%{ Démonstration

Considérons une courbe 7 (t) = (z(t), y(t)) qui se déplace uniquement le long de Ia ligne de

niveau définie par f(x,y) = ¢, ol c est une constante. Le vecteur 7’(t) = (dZ—E”, df‘i—f))

est le vecteur vitesse de cette courbe, il est tangent a la ligne de niveau a chaque instant ¢.

Fa(t),y(t)) c

G [ (1), y(0))] 0
95(t) de(t) | 0f() dy(t) _

oz dt oy dt
df(t) da(t)
ox . dt -0
af(t) dy(t)
oy dt
Vi 7 =0

_>
Autrement dit, Vf(t) et 7’ (t) sont orthogonaux.
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Exemple n°5 : Sur le dessin suivant, on a représenté en jaune une partie de I'ellipsoide définie par
z = f(z,y) = 1522 — 20zy + 37y? — 40z + 22y,

en vert le plan d'équation z = 239 qui coupe la surface f (I'ellipsoide) par une courbe bleue qui
est une ellipse. La ligne de niveau f(z,y) = 239 est tracée en bleue. On a tracé un point B sur

cette ligne de niveau, et un vecteur tangent en ce point. Le gradient de f en B (?f(B)) est

orthogonale a la ligne de niveau passant par B.

(Lancer I’application) (Lancer I’application)
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I. Le gradient.

Exercice n°1 : Tu vas étudier cette courbe de niveau (f(gc7 y) = 239) représentée ci-dessous :

. @ Détermines, les deux points A et B d’ordonnées —2.

M. Drouot
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I. Le gradient.

Exercice n°1 : Tu vas étudier cette courbe de niveau (f(gc7 y) = 239) représentée ci-dessous :

. @ Détermines, les deux points A et B d’ordonnées —2.

f(z,—2) = 1522 + 40x + 37(—2)2 — 40z — 44
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I. Le gradient.

Exercice n°1 : Tu vas étudier cette courbe de niveau (f(ac7 y) = 239) représentée ci-dessous :
@ Détermines, les deux points A et B d’ordonnées —2.

f(xr 72)

M. Drouot

= 1522 4 40x + 37(—2)2 — 40x — 44
= 15z2 4+ 104
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I. Le gradient.
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I. Le gradient.
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I. Le gradient.

30z — 20y — 40 ¢ 1 1
V(z,y) = : donc Vf(B) = B) ~
@ Vi =| ", 44y 4 2o dOmC VI(B) (—186) 90 (—2, 1)
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I. Le gradient.

@ ?f(x,y) = | 30z =20y =40 donc ?f(B) = ( (186) et —?f ( ). 1)

—20x + T4y + 22

— , 2,1 -
@ Un vecteur t tangent en B a donc pour coordonnées ( > ou < >
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I. Le gradient.
@ Vi = 2 done B(B) = < 0 ) et %?f(B) ~ <1 >

—20x + T4y + 22 —186 2,1
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I. Le gradient.
@ Vi = 2 done B(B) = < 0 ) et %?f(B) ~ <1 >

—20x + T4y + 22 —186 2,1

2,1 -2,1
@ Un vecteur 7 tangent en B a donc pour coordonnées ( 1 > ou < >

-1
2,1 1 —-2,1 1
car . =0 et . =0
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I. Le gradient.

2. Lignes de plus forte pente

Considérons les lignes de niveau f(z,y) = k d'une fonction f: R? — R. On se place en un point
(z0,Y0). On cherche dans quelle direction se déplacer pour augmenter au plus vite la valeur de f.

Propriété:

Le vecteur gradient grad f(xo,yo) indique la direction de plus grande pente a partir du point
(%0,Y0)-

Autrement dit, si I'on veut, a partir d'un point donné (zo,yo) de niveau a, passer au niveau b > a
le plus vite possible, alors il faut démarrer en suivant la direction du gradient ?f(xo,yo)-

z

A

(Lancer I’application.)
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I. Le gradient.

?f(fl?m o)

(z0,%0)
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VIII. Le gradient.

Considérons un vecteur o de norme 1 faisant un angle 0 avec le vecteur gradient en (zo,yo)

7,

Y

?f(x(),yo)

M. Drouot
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VIII. Le gradient.

Considérons un vecteur o de norme 1 faisant un angle 0 avec le vecteur gradient en (zo,yo)

7,

Y

¥ (20, 90)
D f(20,y0) = Vf(z0,50) - T =
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VIII. Le gradient.

Considérons un vecteur o de norme 1 faisant un angle 0 avec le vecteur gradient en (zo,yo)

7,

0

Y

?f(x(),yo)
D f(@o,90) = Vf(@o,p0) - T = ||V (@0, 90)]| x I x cos(6)
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VIII. Le gradient.

Considérons un vecteur o de norme 1 faisant un angle 0 avec le vecteur gradient en (zo,yo)

7,

0

Y

?f(x(),yo)
D f(@o,90) = Vf(@o,p0) - T = ||V (@0, 90)]| x I x cos(6)
= H?f(xo,yg)ncos(a)
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VIII. Le gradient.

Considérons un vecteur o de norme 1 faisant un angle 0 avec le vecteur gradient en (zo,yo)

7,

0

Y

?f(x(),yo)
D f(@o,90) = Vf(@o,p0) - T = ||V (@0, 90)]| x I x cos(6)
= H?f(xo,yg)ncos(a)

Donc, la pente D f(zo0,yo) est maximale quand 6 = 0, donc dans la direction du vecteur
gradient.
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VIII. Le gradient.

Exercice n°2 : On considére la fonction f définie sur R? par
f(z,y) = 223 + zy? + 322 + y2 — 362.
O Quelle est la cote du point A d'abscisse 4 et d'ordonnée 1.
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VIII. Le gradient.

Exercice n°2 : On considére la fonction f définie sur R? par
f(z,y) = 22% + zy? + 322 + y2 — 362.

O Quelle est la cote du point A d'abscisse 4 et d'ordonnée 1.
f(4,1) =37

@ Détermine la différentielle de f.
df(z,y) = (622 + y? + 6z — 36) dz + (2zy + 2y) dy

© Détermine la différentielle de f en (4,1).
df(4,1) =85dz + 10dy

Q Détermine un vecteur de norme 1 qui indique la pente maximale en (4,1).
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1 85 1 17
?,‘ 4,1)|| = v/85% + 102 = 1/7325. Le vecteur demandé est ——— =
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VIII. Le gradient.

Exercice n°2 : On considére la fonction f définie sur R? par
f(z,y) = 223 + zy? + 322 + y2 — 362.
O Quelle est la cote du point A d'abscisse 4 et d'ordonnée 1.

f(4,1) =37
@ Détermine la différentielle de f.

df(z,y) = (622 + y? + 62 — 36) dz + (2zy + 2y) dy
© Détermine la différentielle de f en (4,1).

df(4,1) =85dz + 10dy

Q Détermine un vecteur de norme 1 qui indique la pente maximale en (4,1).

85
La pente maximale est donnée par le gradient ?f(zl, 1) = <18)

1 85 1 17
?,‘ 4,1)|| = v/85% + 102 = 1/7325. Le vecteur demandé est ——— =
H f( )H V7325 \ 10 V293 \ 2

@ A quelle courbe ce vecteur est-il orthogonal 7

A la ligne de niveau z = 37.
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VIII. Le gradient.

Sur cette figure on a dessiner les vecteurs gradients normés
(de norme 1) sur la courbe de niveau z = 37.

Ces vecteurs indiquent la direction dans laquelle la fonction
f croit le plus rapidement.
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