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I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

1. Formule de Taylor.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

f est di�érentiable en (x, y) et sa di�érentielle est : df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

C'est une forme linéaire : df(x, y).
(h
k

)
=

∂f

∂x
h+

∂f

∂y
k

df est di�érentiable en (x, y) et la di�érentielle de df en (x, y) est sa di�érentielle
d'ordre deux :

d2f(x, y) =
∂2f

∂x2
dx⊗ dx+

∂2f

∂x∂y
dx⊗ dy +

∂2f

∂y∂x
dy ⊗ dx+

∂2f

∂y2
dy ⊗ dy

C'est une forme bilinéaire : d2f(x, y).
((a

b

)
,
(c
d

))
=

∂2f

∂x2
ac+

∂2f

∂x∂y
(ad+ bc) +

∂2f

∂y2
bd

Et, d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
h2 + 2

∂2f

∂x∂y
hk +

∂2f

∂y2
k2

Théorème

M. Drouot Di�érentielle d'ordre 2. 2 / 43



I. Di�érentielle d'ordre 2.

Si f est une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées partielles
d'ordre 2 par rapport à x et à y existent et sont continues, alors :

La formule de Taylor à l'ordre 2 :

f(x+ h, y + k) = f(x, y)

+h
∂f

∂x
+ k

∂f

∂y︸ ︷︷ ︸
df(x,y).

(
h
k

)
+
1

2

(
h2 ∂

2f

∂x2
+ 2hk

∂2f

∂x∂y
+ k2

∂2f

∂y2

)
︸ ︷︷ ︸

d2f(x,y).
((

h
k

)
,
(
h
k

))
+◦
(∥∥∥(hk)∥∥∥2)

Théorème

☞
∥∥∥(hk)∥∥∥2 =

(√
h2 + k2

)2
= h2 + k2

☞ d2f(x, y).
((

h
k

)
,
(
h
k

))
s'écrit plus simplement d2f(x, y).

(
h
k

)2
☞ f

(
A+−→u

)
= f(A) + df(A).−→u +

1

2
d2f(A).

(−→u ,−→u
)
+ ◦

(∥∥−→u ∥∥2)

Remarque
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I. Di�érentielle d'ordre 2.

Exemple no 1 : Ecris la formule de Taylor à l'ordre 2 en (0, 0) de la fonction f dé�nie sur R2 par

f(x, y) = ey−x2

On calcule les dérivées partielles en (0,0) :

∂f

∂x
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂f

∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂y2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M. Drouot Di�érentielle d'ordre 2. 4 / 43



I. Di�érentielle d'ordre 2.

Exemple no 1 : Ecris la formule de Taylor à l'ordre 2 en (0, 0) de la fonction f dé�nie sur R2 par

f(x, y) = ey−x2

On calcule les dérivées partielles en (0,0) :

∂f

∂x
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂f

∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂y2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M. Drouot Di�érentielle d'ordre 2. 4 / 43



I. Di�érentielle d'ordre 2.

Exemple no 1 : Ecris la formule de Taylor à l'ordre 2 en (0, 0) de la fonction f dé�nie sur R2 par

f(x, y) = ey−x2

On calcule les dérivées partielles en (0,0) :

∂f

∂x
(0, 0) = −2xey−x2

∣∣∣
(0,0)

= 0

∂f

∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂y2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M. Drouot Di�érentielle d'ordre 2. 4 / 43



I. Di�érentielle d'ordre 2.

Exemple no 1 : Ecris la formule de Taylor à l'ordre 2 en (0, 0) de la fonction f dé�nie sur R2 par

f(x, y) = ey−x2

On calcule les dérivées partielles en (0,0) :

∂f

∂x
(0, 0) = −2xey−x2

∣∣∣
(0,0)

= 0

∂f

∂y
(0, 0) = ey−x2

∣∣∣
(0,0)

= 1

∂2f

∂x2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂y2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M. Drouot Di�érentielle d'ordre 2. 4 / 43



I. Di�érentielle d'ordre 2.

Exemple no 1 : Ecris la formule de Taylor à l'ordre 2 en (0, 0) de la fonction f dé�nie sur R2 par

f(x, y) = ey−x2

On calcule les dérivées partielles en (0,0) :

∂f

∂x
(0, 0) = −2xey−x2

∣∣∣
(0,0)

= 0

∂f

∂y
(0, 0) = ey−x2

∣∣∣
(0,0)

= 1

∂2f

∂x2
(0, 0) = 4x2ey−x2 − 2ey−x2

∣∣∣
(0,0)

= −2

∂2f

∂y2
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f

∂x∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M. Drouot Di�érentielle d'ordre 2. 4 / 43



I. Di�érentielle d'ordre 2.

Exemple no 1 : Ecris la formule de Taylor à l'ordre 2 en (0, 0) de la fonction f dé�nie sur R2 par

f(x, y) = ey−x2

On calcule les dérivées partielles en (0,0) :

∂f

∂x
(0, 0) = −2xey−x2

∣∣∣
(0,0)

= 0

∂f

∂y
(0, 0) = ey−x2

∣∣∣
(0,0)

= 1

∂2f

∂x2
(0, 0) = 4x2ey−x2 − 2ey−x2

∣∣∣
(0,0)

= −2

∂2f

∂y2
(0, 0) = ey−x2

∣∣∣
(0,0)

= 1

∂2f

∂x∂y
(0, 0) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M. Drouot Di�érentielle d'ordre 2. 4 / 43



I. Di�érentielle d'ordre 2.

Exemple no 1 : Ecris la formule de Taylor à l'ordre 2 en (0, 0) de la fonction f dé�nie sur R2 par

f(x, y) = ey−x2

On calcule les dérivées partielles en (0,0) :

∂f

∂x
(0, 0) = −2xey−x2

∣∣∣
(0,0)

= 0

∂f

∂y
(0, 0) = ey−x2

∣∣∣
(0,0)

= 1

∂2f

∂x2
(0, 0) = 4x2ey−x2 − 2ey−x2

∣∣∣
(0,0)

= −2

∂2f

∂y2
(0, 0) = ey−x2

∣∣∣
(0,0)

= 1

∂2f

∂x∂y
(0, 0) = −2xey−x2

∣∣∣
(0,0)

= 0

M. Drouot Di�érentielle d'ordre 2. 4 / 43



I. Di�érentielle d'ordre 2.
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f(x, y) = ey−x2
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∂x2
(0, 0) = −2

∂2f

∂y2
(0, 0) = 1

∂2f

∂x∂y
(0, 0) = 0

f(0 + h, 0 + k) = f(0, 0)+ MMMMMM︸ ︷︷ ︸
df(0,0).

(
h
k

)

+
1

2
MMMMMMMMMMMMMM︸ ︷︷ ︸

d2f(0,0).
(
h
k

)2
+ ◦

(
x2 + y2

)
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1 − x2 + y +
y2

2
est

l'approximation de f à l'ordre 2 en
(0, 0) par la formule de Taylor.

x
−3 −2 −1 0

z

x 7−→ e−x2

x 7−→ 1− x2

x 7−→ . . .

x 7−→ . . . . . .

y
−1 0 1

z

y 7−→ 1 + y + y2

2

y 7−→ ey

y 7−→ . . . . . . . . . . . .

y 7−→ . . .
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I. Di�érentielle d'ordre 2.

2. Application à la recherche d'extremums.

On se limite à la recherche d'extremums d'une fonction f sur un ouvert U de R2. Dans cette
partie, nous commencerons par étudier la fonction f dé�nie sur R2 par f(x, y) = x2 + y3 + 3y2.

Un point qui annule le gradient (di�érentielle nulle) de f s'appelle un point critique de f .

Dé�nition:

Les extrema locaux d'une fonction di�érentiable sur un ouvert U de R2 sont à chercher
parmi ses points critiques.

Théorème

Exemple no 3 : Recherchons les points critiques de f :

∂f

∂x
= . . . . . . et

∂f

∂y
= . . . . . . . . .

−→
∇f(x, y) =

(
2x

3y2 + 6y

)
=

−→
0 ⇐⇒

x = 0

y(3y + 6) = 0
⇐⇒

x = 0

y = 0 ou y = −2
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Exemple no 4 : f(x, y) = x2 + y3 + 3y2

−→
∇f(x, y) =
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. . .

. . .

 et B

. . .

. . .

. . .


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IX. Di�érentielle d'ordre 2.

Un point critique n'est pas nécessairement un extremum.

Minimum Maximum Point selle

On voit que le minimum On voit que les vecteurs Un minimum suivant l'axe (Ox)

repousse les vecteurs gradients. gradients pointent bien et un maximum suivant l'axe (Oy).

vers le maximum.
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I. Di�érentielle d'ordre 2.

Pour déterminer la nature de chacun des deux points, on va étudier la di�érentielle d'ordre 2 en
chacun de ces points :

∂2f

∂x2
= . . . ,

∂2f

∂y2
= . . . . . . . . . et

∂2f

∂x∂y
= . . .

d2f(x, y).
(
h
k

)2
=

∂2f

∂x2
h2 + 2×

∂2f

∂x∂y
× hk +

∂2f

∂y2
k2

d2f(x, y).
(
h
k

)2
= 2h2 + 2× 0× hk + (6y + 6)k2 = 2h2 + (6y + 6)k2

Etude du point A : d2f(0, 0) = . . . . . . . . . . . . . . . . donc le développement de Taylor s'écrit :

f(0 + h, 0 + k) = f(0, 0) + df(0, 0).
(
h
k

)︸ ︷︷ ︸
=0

+
1

2
d2f(0, 0).

(
h
k

)2
+ ◦

(
h2 + k2

)
f(0 + h, 0 + k) = f(0, 0) + h2 + 3k2 + ◦

(
h2 + k2

)
f(0 + h, 0 + k)− f(0, 0) = h2 + 3k2 + ◦

(
h2 + k2

)
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Etude du point A :

f(0 + h, 0 + k)− f(0, 0) = h2 + 3k2 + ◦
(
h2 + k2

)
Donc, il existe un voisinage de A, où f(0 + h, 0 + k)− f(0, 0) ⩾ 0.

Le point A est donc un minimum local.
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I. Di�érentielle d'ordre 2.

Etude du point B : d2f(0,−2) =

2 dx2 − 6 dy2 donc le développement de Taylor s'écrit :

f(0 + h,−2 + k) = f(0,−2) + h2 − 3k2 + ◦
(
h2 + k2

)
f(0 + h,−2 + k)− f(0,−2) = h2 − 3k2 + ◦

(
h2 + k2

)
Donc, le signe de f(0 + h,−2 + k)− f(0,−2) �uctue sur tout voisinage de B.

Le point B est un point selle.

y
−3 −2 −1 0

zB

Cg

g : y 7−→ f(0, y) = y3 + 3y2

x
−1 0 1

z

B
Ch

h : x 7−→ f(x,−2) = x2 + 4
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IX. Di�érentielle d'ordre 2.

Recherche des extremums de la fonction f dé�nie sur R2 par

f(x, y) = 2x3 + xy2 + 3x2 + y2 − 36x

1 On écrit la formule de Taylor à l'ordre 2 de la fonction f :

On a vu que :
∂f

∂x
= 6x2 + y2 + 6x− 36 et

∂f

∂y
= 2xy + 2y.

Il reste
∂2f

∂x∂y
= . . . ,

∂2f

∂x2
= . . . . . . . . . , et

∂2f

∂y2
= . . . . . . . . .

f(x+ h, y + k) = f(x, y)+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
1

2

[
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

]
+ ◦
(
x2 + y2

)
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d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On recherche les points critiques de f :

−→
∇f(x, y) =

(
6x2 + y2 + 6x− 36

2xy + 2y

)
=

−→
0 ⇐⇒

M

M

⇐⇒

M

M

⇐⇒

M

M
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3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) =

−30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2

donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) =

f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)

f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦
(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) =

−15h2 − 2k2 + ◦
(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦

(
h2 + k2

)

Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0)

⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point A : d2f(−3, 0) = −30 dx2 − 4 dy2 donc de Taylor s'écrit :

f(−3 + h, 0 + k) = f(−3, 0)−15h2 − 2k2 + ◦
(
h2 + k2

)
f(−3 + h, 0 + k)− f(−3, 0) = −15h2 − 2k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point A où f(−3 + h, 0 + k)− f(−3, 0) ⩽ 0

Il s'en suit que A est un maximum local.

M. Drouot Di�érentielle d'ordre 2. 18 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) =

−30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2

donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) =

15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) =

15h2 + 3k2 + ◦
(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦

(
h2 + k2

)

Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0)

⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point B : d2f(2, 0) = −30 dx2 + 6dy2 donc de Taylor s'écrit :

f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦
(
h2 + k2

)
f(2 + h, 0 + k)− f(2, 0) = 15h2 + 3k2 + ◦

(
h2 + k2

)
Donc, il existe un voisinage du point B où f(2 + h, 0 + k)− f(2, 0) ⩾ 0

Il s'en suit que B est un minimum local.

M. Drouot Di�érentielle d'ordre 2. 19 / 43



I. Di�érentielle d'ordre 2.

f(x+ h, y + k) = f(x, y)+
(
6x2 + y2 + 6x − 36

)
h +

(
2xy + 2y

)
k︸ ︷︷ ︸

df(x,y).
(
h
k

)
+

1

2

(
(12x + 6)h2 + (4y)hk + (2x + 2)k2

)︸ ︷︷ ︸
d2f(x,y).

(
h
k

)2
+ ◦

(
x2 + y2

)

2 On trouve 4 points critiques : A

−3

0

81

, B

 2

0

−44

, C

−1

−6

37

, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point C : d2f(−1,−6) =

−6 dx2 − 24 dxdy donc de Taylor s'écrit :

f(−1 + h,−6 + k)− f(−1,−6) = −3h2 − 12hk + ◦
(
h2 + k2

)
Comme −3h2 − 12hk =

qui a un signe non constant sur tout voisinage de C.

f(−1+h,−6+ k)− f(−1,−6) = −3(h+2k)2 +12k2, donc C n'est pas un extremum local.
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, et D

−1

6

37


3 Pour étudier la nature chacun de ces points, on va étudier pour chacun d'eux sa di�érentielle

d'ordre 2 :

d2f(x, y).
(
h
k

)2
= (12x+ 6)h2 + 4yhk + (2x+ 2)k2

Etude du point D : d2f(−1, 6) = −6 dx2 + 24dxdy donc de Taylor s'écrit :

f(−1 + h, 6 + k)− f(−1, 6) = −3h2 + 12hk + ◦
(
h2 + k2

)
Comme −3h2 + 12hk = −3

[
(h − 2k)2 − 4k2

]
= −3(h − 2k)2 + 12k2

qui a un signe non constant sur tout voisinage de D, donc D n'est pas un extremum local.
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∂f

∂y
= 2xy + 2y donc cette dérivée par-

tielle est nulle dans le plan d'équation
x = −1. L'intersection de ce plan avec
la surface Sf est la droite (DC). Donc,
f est constante sur cette droite. D et C
ne peuvent être des extremums.

D'autre part, C est un point d'in�exion
de la courbe représentative de la fonction
x 7−→ f(x, 6). Il en est de même pour D.
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3. Matrice Hessienne et recherche d'extremums.

Supposons que f soit une fonction dé�nie sur un voisinage de (x, y) ∈ R2, dont les dérivées
partielles d'ordre 2 par rapport à x et à y existent et sont continues.
On a vu (formule de Taylor) que :

f(x+ h, y + k) = f(x, y) + df(x, y).
(h
k

)
+

1

2

[
d2f(x, y).

((h
k

)
,
(h
k

)) ]
+ ◦

(∥∥∥(hk)∥∥∥2)
La recherche des extremums de f consiste à chercher les points qui annulent de gradient(
df(x, y) = 0

)
, on les appellent les points critiques), puis à étudier le signe de la forme bilinéaire

d2f(x, y).
((h

k

)
,
(h
k

))
lorsque

(h
k

)
parcourt R2. S'il elle est positive, le point critique est un point

est un minimum, si elle est négative, le point critique est un maximum, si elle change de signe, le
point critique est un point col.
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d2f(x, y).
((h

k

)
,
(h
k

))
=

∂2f

∂x2
× h2 + 2

∂2f

∂x∂y
× hk +

∂2f

∂y2
× k2 est une forme quadratique dont la

matrice associée est :

Etant donnée une fonction f : Rn 7−→ R dont toutes dérivées partielles d'ordre 2 existent et
sont continues, on appelle Hessienne de f la matrice :

∇2(f) =



∂2f

∂x2
1

· · ·
∂2f

∂xn∂x1

...
. . .

...
∂2f

∂x1∂xn
· · ·

∂2f

∂x2
n

 où


f : Rn −→ R

x1

...

xn

 7−→ f(x1, . . . , xn)

Dé�nition:

Remarque: D'après le théorème de Schwarz, la matrice Hessienne est symétrique.
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Etant donnée une fonction f : Rn 7−→ R dont toutes dérivées partielles d'ordre 2 existent
et sont continues et dont le gradient s'annule en a ∈ Rn. Si la signature (s, t) de la forme
quadratique associée à la hessienne ∇2(f) est

dé�nie (s + t = n)2, s ̸= 0 et t ̸= 0 alors a est un point selle.

dé�nie négative (t = n), alors a est un maximum local ;

dé�nie positive (s = n), alors a est un minimum local.

Théorème
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Exemple no 5 : Etude de f(x, y) = −x2

−→
∇f(x, y) =

(
−2x

0

)
=

−→
0 ⇐⇒ x =

0.

∇2(f)(x, y) =

(
−2 0
0 0

)
donc ∇2(f)(0, y) =

(
−2 0
0 0

)

La forme quadratique associée à ∇2(f) est

q(x, y) = −2x2.

Sa signature est (0, 1).

Donc, la forme quadratique q n'est pas une forme dé�nie,

elle est semi-dé�nie négative.

f(x, y) = −x2 admet un maximum, mais, il s'agit d'un
maximum non strict qui est atteint sur toute une droite
x = 0 du plan (xOy).
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I. Di�érentielle d'ordre 2.

Exemple no 6 : Etude de f(x, y) = x2 + y3

3
.

−→
∇g(x, y) =

(
2x

y2

)
=

−→
0 ⇐⇒ x =

0 et y = 0.

∇2(g)(x, y) =

(
2 0
0 −2y

)
donc ∇2(g)(0, 0) =

(
2 0
0 0

)
La forme quadratique associée à ∇2(g) est q(x, y) = 2x2.

Sa signature est (1, 0).

Donc, la forme quadratique q n'est pas une forme dé�nie,

elle est semi-dé�nie positive.

Le point (0, 0) n'est pas un extremum,

c'est un point selle ou plutôt un point "chaise"...
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I. Di�érentielle d'ordre 2.

Exemple no 7 : Etude de h(x, y, z) = y2z + y2 + 2x− 16z + x2
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I. Di�érentielle d'ordre 2.

Exercice no 1 : On considère la fonction dé�nie sur R2 par f(x, y) = x4 − 2x2 + xy2 + 2.
Détermine la nature de ses deux points critiques A(1, 0, 1) et B(−1, 0, 1).
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I. Di�érentielle d'ordre 2.

Exercice no 2 : Pour chacune des fonctions suivantes :

1 f(x, y) = (x− 1)2 + 2y2

2 g(x, y) = 2x3−6xy+3y2

3 h(x, y) = x2y − 4y

4 i(x, y) = x3 − 3x(1 + y2)

5 j(x) = x2y2 + 4x2y +

3x2 − 4y2 − 16y − 12

1 Détermine son gradient.

2 Détermine ses points critiques.

3 Ecris sa formule de Taylor à l'ordre deux.

4 Détermine la nature de chacun de ses points critiques.
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I. Di�érentielle d'ordre 2.

Exercice no 3 : Etudie la fonction dé�nie sur R3 par f(x, y, z) = y4 + x2 − 2y2 + z2 + 4x+ 5.
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I. Di�érentielle d'ordre 2.

Exercice no 4 : On considère f(x, y, z) = z4 + x2 + 2y2 − 7z2 − 2xy − 2yz + 2x− 2y dé�nie sur
R2.
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I. Di�érentielle d'ordre 2.

4. Méthode de Lagrange.

On ajoute la contrainte g(x, y) = 0 à notre recherche d'extremum. Autrement dit, on recherche le
ou les extremums de f qui véri�ent l'équation g(x, y) = 0.
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I. Di�érentielle d'ordre 2.

Exemple no 8 :

{
f(x, y) = x2 + y2

x2 + 4y2 = 4
,

la contrainte g(x, y) = x2 + 4y2 − 4 = 0 est

représentée en bleu, dans le plan (xOy), c'est une ellipse. L'image de cette ellipse par f est la
courbe verte tracée sur la surface jaune représentant f . On voit que cette courbe a deux
maximums : A et B, et deux minimums : C et D.

�gure en 3D
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�gure en 3D
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I. Di�érentielle d'ordre 2.

Soient f et g deux fonctions di�érentiables dé�nies sur un ouvert U de R2.

Si la fonction f admet un extremum local au pointM0(x0, y0) sous la contrainte g(x, y) = 0
tel que :

Le point M0 véri�e la contrainte : g(x0, y0) = 0 ;

Le gradient de la contrainte en ce point n'est pas nul :
−→
∇g(x0, y0) ̸= 0⃗ ;

Alors, il existe un nombre réel λ, appelé multiplicateur de Lagrange, tel que :

−→
∇f(x0, y0) = λ

−→
∇g(x0, y0)

Théorème : des Multiplicateurs de Lagrange
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I. Di�érentielle d'ordre 2.

Exemple no 9 : Reprenons l'exemple précédent où f(x, y) = x2 + y2 et g(x, y) = x2 + 4y2 − 4.

1 Résolution du système :
−→
∇f(x, y) =

(
2x

2y

)
et

−→
∇g(x, y) =

(
2x

8y

)

donc
−→
∇f(x, y) = λ

−→
∇g(x, y) s'écrit

{
2x = λ× 2x

2y = λ× 8y
,

On doit donc résoudre le système


2x(1− λ) = 0

2y(1− 4λ) = 0

x2 + 4y2 = 4

En pratique, on écrit le lagrangien L(x, y, λ) = f(x, y)− λg(x) et on cherche les points
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−→
∇f(x, y) =

(
2x

2y

)
et

−→
∇g(x, y) =

(
2x

8y

)

donc
−→
∇f(x, y) = λ

−→
∇g(x, y) s'écrit

{
2x = λ× 2x

2y = λ× 8y
,

On doit donc résoudre le système


2x(1− λ) = 0

2y(1− 4λ) = 0

x2 + 4y2 = 4

En pratique, on écrit le lagrangien L(x, y, λ) = f(x, y)− λg(x) et on cherche les points
où le gradient du lagrangien s'annule sous la contrainte g(x, y) = 0.

Méthode

L(x, y, λ) = x2 + y2 − λ
(
x2 + 4y2 − 4

)
d'où


∂L
∂x

= 2x− 2λx = 0 =⇒ 2x(1− λ) = 0

∂L
∂y

= 2y − 8λy = 0 =⇒ 2y(1− 4λ) = 0

∂L
∂λ

= x2 + 4y2 − 4 = 0

,

on retrouve le même système.
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I. Di�érentielle d'ordre 2.

2 Etude des cas :

Cas no 1 : x = 0 : La contrainte s'écrit

4y2 = 4 donc y = ±1.

La deuxième équation s'écrit : (1 − 4λ) = 0 donc λ =
1

4
. On trouve

(
0

−1

)
et

(
0

1

)
.

Cas no 2 : x ̸= 0. D'après l'équation (1), λ = 1.

La deuxième équation s'écrit : 2y × (−3) = 0 donc y = 0.

La contrainte s'écrit : x2 = 4 donc x = ±2. On trouve

(
−2

0

)
et

(
2

0

)
.

On vient de trouver 4 extremums potentiels (points critiques) :

D

(
0

−1

)
, C

(
0

1

)
, B

(
−2

0

)
et A

(
2

0

)
.
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I. Di�érentielle d'ordre 2.

On appelle matrice Hessienne bordée : H(x, y, λ) =


0 ∂g

∂x
∂g
∂y

∂g
∂x

∂2L
∂x2

∂2L
∂x∂y

∂g
∂y

∂2L
∂y∂x

∂2L
∂y2



Dé�nition:

On calcule le déterminant de la matrice Hessienne bordée, noté
∣∣H̄∣∣, au point critique :

Si
∣∣H∣∣ > 0, alors le point (x0, y0) est un maximum local lié.

Si
∣∣H∣∣ < 0, alors le point (x0, y0) est un minimum local lié.

Si
∣∣H∣∣ = 0, alors on ne peut pas conclure (cas dégénéré).

Théorème
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I. Di�érentielle d'ordre 2.

4 Calcul des dérivées secondes :

L(x, y, λ) = f(x, y)− λg(x) =

x2 + y2 − λ
(
x2 + 4y2 − 4

)
∂L

∂x
= . . . . . .

∂2L

∂x2
= . . . . . .

∂L

∂y
= . . . . . .

∂2L

∂y2
= . . . . . .

∂2L

∂y∂x
= . . .

∂2L

∂x∂y
= . . .

∂g

∂x
= . . . . . .

∂g

∂y
= . . . . . .

La hessienne bordée est donc : H =


0 ∂g

∂x
∂g
∂y

∂g
∂x

∂2L
∂x2

∂2L
∂x∂y

∂g
∂y

∂2L
∂y∂x

∂2L
∂y2

 =


0 2x 8y

2x 2− 2λ 0

8y 0 2− 8λ


∣∣H∣∣ = −2x

∣∣∣∣ 2x 0
8y 2− 8λ

∣∣∣∣ + 8y

∣∣∣∣ 2x 2− 2λ
8y 0

∣∣∣∣
= −2x

(
4x− 16λx

)
+ 8y

(
− 16y + 16λy

)
= −8x2 − 128y2 + 32λx2 + 128λy2

= 8x2
(
4λ− 1

)
+ 128y2(λ− 1)
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I. Di�érentielle d'ordre 2.

3
∣∣H∣∣ = 8x2

(
4λ− 1

)
+ 128y2(λ− 1)

4 Etude des points critiques :

Le point A

(
2

0

)
et λ = 1,

∣∣H̄∣∣ = 8 × 22 (4 × 1 − 1) + 128 × 02 × (1 − 1) = 96 > 0

Donc le point A est un maximum.

Le point B

(
−2

0

)
et λ = 1,

∣∣H̄∣∣ = 8 × (−2)2 (4 × 1 − 1) + 128 × 02 × (1 − 1) = 96 > 0

Donc le point b est un maximum.

Le point C

(
0

1

)
et λ =

1

4
,
∣∣H̄∣∣ = 8 × 02

(
4 ×

1

4
− 1

)
+ 128 × 12 ×

(
1

4
− 1

)
= − 96 < 0

Donc le point A est un minimum.

Le point D

(
0

−1

)
et λ =

1

4
,
∣∣H̄∣∣ =

8 × 02
(
4 ×

1

4
− 1

)
+ 128 × (−1)2 ×

(
1

4
− 1

)
= − 96 < 0

Donc le point A est un minimum
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Exercice no 5 : Détermine l'aire maximal d'un rectangle de périmètre 20.
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Exercice no 6 : Trouve les extrema de f(x, y) = x2 + y2 sous la contrainte x+ 2y = 5.
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Exercice no 7 : Trouve les extrema de f(x, y) = x− y sous la contrainte x2 + y2 = 2.
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