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Un point critique n’est pas nécessairement un extremum.

,,73?,77777777

Minimum Maximum Point selle

On voit que le minimum On voit que les vecteurs Un minimum suivant I'axe (Oz)
repousse les vecteurs gradients.  gradients pointent bien et un maximum suivant I'axe (Oy).
vers le maximum.
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|. Différentielle d’ordre 2.

Pour déterminer la nature de chacun des deux points, on va étudier la différentielle d'ordre 2 en
chacun de ces points :
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o Etude du point A :
f(O+h,0+ k) — £(0,0) = h? + 3k? + o(h? + k2?)
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o Etude du point A :
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Dong, il existe un voisinage de A, ou f(0+ h,0+ k) — £(0,0) > 0.
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IX. Différentielle d’ordre 2.

Recherche des extremums de la fonction f définie sur R2 par

f(z,y) = 223 + 2y® + 322 + 32 — 362
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qui @ un signe non constant sur tout voisinage de D, donc D n'est pas un extremum local.
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? = 2xy + 2y donc cette dérivée par-
tiegz/lle est nulle dans le plan d’équation
xr = —1. L'intersection de ce plan avec
la surface Sy est la droite (DC). Donc,
f est constante sur cette droite. D et C
ne peuvent étre des extremums.

D’autre part, C est un point d’inflexion
de la courbe représentative de la fonction
x —> f(x,6). Il en est de méme pour D.
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3. Matrice Hessienne et recherche d’extremums.

Supposons que f soit une fonction définie sur un voisinage de (z,y) € R?, dont les dérivées
partielles d’ordre 2 par rapport a x et a y existent et sont continues.
On a vu (formule de Taylor) que :
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3. Matrice Hessienne et recherche d’extremums.

Supposons que f soit une fonction définie sur un voisinage de (z,y) € R?, dont les dérivées
partielles d’ordre 2 par rapport a x et a y existent et sont continues.
On a vu (formule de Taylor) que :

Fa oy ) = flea) + e () + 3 [ ((.0) |+ o (&)

La recherche des extremums de f consiste a chercher les points qui annulent de gradient
(df(x, y) = O), on les appellent les points critiques), puis a étudier le signe de la forme bilinéaire

a%f(z,y). ((Z), (Z)) lorsque (Z) parcourt R2. S'il elle est positive, le point critique est un point

est un minimum, si elle est négative, le point critique est un maximum, si elle change de signe, le
point critique est un point col.
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0?2 0 0?
dA%f(x,y). ((Z), (Z)) F. J; h? 4+ 2(9 gy x hk + a—yz x k? est une forme quadratique dont la
matrice associée est :
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0?2 0 0?
dA%f(x,y). ((Z), (Z)) F. J; h? 4+ 2(9 gy x hk + a—yz x k? est une forme quadratique dont la
matrice associée est :

Définition:

Etant donnée une fonction f : R™ — R dont toutes dérivées partielles d'ordre 2 existent et
sont continues, on appelle Hessienne de f la matrice :

o*f o*f fi R — R

dT% Oxp0x o

V3(f) = : 3, : ol
5 ' 5 — f(@1,...,20)
o°f o°f
0x10xn Bacfl Tn
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0?2 0 0?
dA%f(x,y). ((Z), (Z)) F. J; h? 4+ 2(9 gy x hk + a—yz x k? est une forme quadratique dont la
matrice associée est :

Définition:

Etant donnée une fonction f : R™ — R dont toutes dérivées partielles d'ordre 2 existent et
sont continues, on appelle Hessienne de f la matrice :

o*f o*f fi R — R

dT% Oxp0x -

V3(f) = : 3, : ol
5 ' 5 — f(z1,.. . 20)
o°f o°f
0x10xn Bacfl Tn

Ve

\E@Remarque: D'aprés le théoréme de Schwarz, la matrice Hessienne est symétrique.
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Théoréme

Etant donnée une fonction f : R™ —— IR dont toutes dérivées partielles d’ordre 2 existent
et sont continues et dont le gradient s'annule en a € R™. Si la signature (s,t) de la forme
quadratique associée a la hessienne V2(f) est

o définie (s +t = mn)2, s # 0 et t # 0 alors a est un point selle.
o définie négative (¢t = m), alors a est un maximum local;

o définie positive (s = n), alors a est un minimum local.
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Exemple n°5 : Etude de f(z,y) = —22

i ?f(w,y)=< >=5><=>$:
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Exemple n°5 : Etude de f(z,y) = —22

‘i ?f(:}c,y) = (—21;) -0 «— z= 0.
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Exemple n°5 : Etude de f(z,y) = —22

‘i ?f(:}c,y) = <_57> =0 < z= 0.
: V2(f)(2,y) = ( )
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La forme quadratique associée & V2(f) est
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Sa signature est (0,1).

Dong, la forme quadratique g n’est pas une forme définie,

elle est semi-définie négative.
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2
i ?f(:}c,y) = (—j:;;) =0 < z= 0.
v = () done o= (7 0)

La forme quadratique associée & V2(f) est
q(z,y) = —227.

Sa signature est (0,1).

Dong, la forme quadratique g n’est pas une forme définie,

elle est semi-définie négative.

f(z,y) = —2? admet un maximum, mais, il s'agit d'un
maximum non strict qui est atteint sur toute une droite
z = 0 du plan (zOy).
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Sa signature est (1, 0).
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g(z,y) = <2§> -0 — z=0ety=0.
Yy
Ve = (5 5,) e @00 = (5 0)

La forme quadratique associée & V2(g) est q(z,y) = 2z2.

Sa signature est (1, 0).

Donc, la forme quadratique g n’est pas une forme définie,
elle est semi-définie positive.

Le point (0,0) n’est pas un extremum,

c’est un point selle ou plutét un point "chaise"...

M. Drouot Differentielle d'ordre 2. 27 /43


https://www.pdrouot.fr/CNAM/TroisD/Forme_semi_definie.html

|. Différentielle d’ordre 2.

Exemple n°7 : Etude de h(z,y,2) = y%z + y? + 2 — 16z + =2

M. Drouot Differentielle d'ordre 2. 28 /43



|. Différentielle d’ordre 2.

Exercice n°1 : On considére la fonction définie sur R? par f(z,y) = z* — 222 + 2y® + 2.
Détermine la nature de ses deux points critiques A(1,0,1) et B(—1,0,1).
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Exercice n° 2 : Pour chacune des fonctions suivantes :

@ f@y) =@-1)2+22 () hlz,y) =22y — 4y (®) i(@) = a?y? + 2y +
2 _ 2 _ 1@ —
@ g(z,y) =22 —6ay+3y> (@) i(w,y) = 2° - 3x(1 +1?) 3o — 4y — 16y — 12

@ Détermine son gradient.

@ Détermine ses points critiques.

© Ecris sa formule de Taylor a I'ordre deux.

Q Détermine la nature de chacun de ses points critiques.
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Exercice n°3 : Etudie la fonction définie sur R3 par f(z,y,2) = y* + 22 — 2y + 22 + 4z + 5.
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Exercice n°4 : On considére f(x,vy,2) = 2% + 22 + 2y% — 722 — 22y — 2yz + 22 — 2y définie sur
R2.
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4. Méthode de Lagrange.

On ajoute la contrainte g(x,y) = 0 a notre recherche d’extremum. Autrement dit, on recherche le
ou les extremums de f qui vérifient I'équation g(z,y) = 0.
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fz,y) = 2* + y?

. la contrainte g(z,y) = 2 + 4y2 — 4 = 0 est
2? + 4y? = 4 9(z,y) + 4y

Exemple n° 8 : {
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représentée en bleu, dans le plan (zOy), c’est une ellipse.
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représentée en bleu, dans le plan (zOy), c’est une ellipse. L'image de cette ellipse par f est la
courbe verte tracée sur la surface jaune représentant f. On voit que cette courbe a deux
maximums : A et B, et deux minimums : C et D.
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nghéoréme : des Multiplicateurs de Lagrange

Soient f et g deux fonctions différentiables définies sur un ouvert U de R2.
Si la fonction f admet un extremum local au point My(xo, yo) sous la contrainte g(z,y) = 0
tel que :

o Le point My vérifie la contrainte : g(xo,yo) = 0;
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nghéoréme : des Multiplicateurs de Lagrange

Soient f et g deux fonctions différentiables définies sur un ouvert U de R2.
Si la fonction f admet un extremum local au point My(xo, yo) sous la contrainte g(z,y) = 0
tel que :

o Le point My vérifie la contrainte : g(xo,yo) = 0;
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tel que :

o Le point My vérifie la contrainte : g(xo,yo) = 0;
o Le gradient de la contrainte en ce point n’est pas nul : ?g(xo,yo) = 0;

Alors, il existe un nombre réel )\, appelé multiplicateur de Lagrange, tel que :

?f(wOa Yo) = Aeg(wm Yo)
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o Casn®1: x = 0 : La contrainte s'écrit 4y® = 4 donc y = +1.
0 0
—. On trouve ( ) et <l>

La deuxiéme équation s'écrit : (1 — 4X) = 0 donc A =

o Casn°2: x # 0. D'aprés I'équation (1), A = 1.
= 0doncy = 0.

La deuxiéme équation s’écrit : 2y X (—3)

La contrainte s'écrit : @2 = 4 donc z = +2
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@ Etude des cas :
o Casn®1: x = 0 : La contrainte s'écrit 4y® = 4 donc y = +1.
0 0
—. On trouve ( ) et <l>

La deuxiéme équation s'écrit : (1 — 4X) = 0 donc A =

o Casn°2: x # 0. D'aprés I'équation (1), A = 1.
= 0doncy = 0.

-2
. On trouve ( 0) et ( )

La deuxiéme équation s’écrit : 2y X (—3)

La contrainte s'écrit : @2 = 4 donc z = +2
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@ Etude des cas :
o Casn®1: x = 0 : La contrainte s'écrit 4y® = 4 donc y = +1.
0 0
—. On trouve ( ) et <l>

La deuxiéme équation s'écrit : (1 — 4X) = 0 donc A =

o Casn°2: x # 0. D'aprés I'équation (1), A = 1.
= 0doncy = 0.

-2 2
. On trouve ( 0) et ( )

La deuxiéme équation s’écrit : 2y X (—3)

La contrainte s'écrit : @2 = 4 donc z = +2
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@ Etude des cas :
o Casn®1: x = 0 : La contrainte s'écrit 4y® = 4 donc y = +1.
0 0
—. On trouve ( ) et <l>

La deuxiéme équation s'écrit : (1 — 4X) = 0 donc A =

o Casn°2: x # 0. D'aprés I'équation (1), A = 1.
= 0doncy = 0.

-2 2
. On trouve et .
0 0

La deuxiéme équation s’écrit : 2y X (—3)

La contrainte s'écrit : @2 = 4 donc z = +2
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@ Etude des cas :

o Casn®1: x = 0 : La contrainte s'écrit 4y? = 4 donc y = +1.

1 0 0
La deuxiéme équation s'écrit : (1 — 4X) = 0 donc A = 1 On trouve ( 1) et <l>

o Casn°2: x # 0. D'aprés I'équation (1), A = 1.
La deuxiéme équation s’écrit : 2y X (—3) = 0 donc y = 0.
. e . 2 —2 2
La contrainte s'écrit : ©° = 4 donc x = +2. On trouve 0 et NE

On vient de trouver 4 extremums potentiels (points critiques) :

A(2) o) ()= )

M. Drouot Differentielle d'ordre 2. 39 /43
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‘ £ L)
%@ Définition:
99 99
Ox oy
. . - = 2 2
On appelle matrice Hessienne bordée : H(z,y,\) = | 22 9°L 0L

ox dx2 oxdy
29 %L %L
dy Oydz oy?
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|. Différentielle d’ordre 2.
Définition:

99 99
Ox oy
- » - -7 2 2
On appelle matrice Hessienne bordée : H(z,y,)\) = % ‘375 aa»yaIL

dg 8°L 8%L
dy Oydz oy?

ﬁThéoréme
On calcule le déterminant de la matrice Hessienne bordée, noté |H |, au point critique :
o Si |H| > 0, alors le point (z0,0) est un maximum local lié.

o Si |H| <0, alors le point (zo,y0) est un minimum local lié.

o Si |ﬁ| =0, alors on ne peut pas conclure (cas dégénéré).
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@ Calcul des dérivées secondes :

L(x’yvA) = f(xry) - )‘g(m) =
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg

° = ... ° = ... ° =... o — = ......
Oz dy Jyox oz
9L 2°L %L dg

Y R ° E R ° = ... @ — = ...
22 oy? 9z0y 9y
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2 9,

o — =2z —2)\x e — = ...... ° 8L:.” o—g: ......
oz Oy Jyox ox
9L 2°L %L dg

° = ... ° = ... ° =... e —~ = ......
dx? oy? 0z0y Oy
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2 9,
o — =2z —2)\x e — = ...... ° 8L:.” o—g: ......
ox oy Aydx ox
52L 8%L %L dg
= - E R ° = ... 0O — = ...
®oaz 2T ay? D20y dy
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg

o — =2z —2)\x o — =2y — 8y ° = ... o — = ......
ox oy Aydx ox
52L 8%L %L dg

= - @ —— = ... ° = ... 0O — = ...
®oaz 2T ay? D20y dy
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

OL OL 2L dg
o — =2z —2)\x o — =2y — 8y ° = ... o — = ......
ox oy Aydx ox
2 o°L 0°L )
oaLzz_z)\ — =2 — 8\ ° =... o—g: ......
22 oy? 9z0y 9y
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

OL OL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — = ......
ox oy Aydx ox
2 o°L 0°L )
oaLzz_z)\ — =2 — 8\ ° =... o—g: ......
22 oy? 9z0y 9y
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 921

o — =2z —2)\x ° =2y — 8y ° =0
Oz Oy Jyox
2 o°L 0°L
oaLzz_z)\ o —— =2 — 8 ° =0
22 oy? 9z0y
M. Drouot Differentielle d’ordre 2.
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 921

o — =2z —2)\x ° =2y — 8y ° =0
Oz Oy Jyox
2 o°L 0°L
oaLzz_z)\ o —— =2 — 8 ° =0
22 oy? 9z0y
M. Drouot Differentielle d’ordre 2.
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@ Calcul des dérivées secondes :
L(z,y,\) = f(z,y) — Ag(z) = 2? + y* — A(z® + 4y® — 4)

oL oL 921 dg

== =2g — 2\ =2y — 8\ - 99 _ o

03&3 x x an Yy y .8yaz_0 oax x
2 9%L %L d

e XL 5o 22 =2_8x o =0 o 20 _ gy
22 oy? 9z0y 9y
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL aL %L 99
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
.aLzz_z)\ ° =2 — 8\ ° =0 o—gzsy
9z oy? O0z0y Jy
99 99
oz Oy
La hessienne bordée est donc : H = | 29 2°L ’L | =
oz o2 dzxdy
2 8%L %L

oy dyox oy?
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
.aLzz_z)\ ° =2 — 8\ ° =0 o—gzsy
9z oy? O0z0y Jy
99 99
oz Oy 0
La hessienne bordée est donc : H = | 29 2°L ’L | =
ox o2 Oz 0y
2 8%L %L

oy dyox oy?
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@ Calcul des dérivées secondes :
L(z,y,\) = f(z,y) — Ag(z) = 2? + y* — A(z® + 4y® — 4)

oL oL 921 dg

o — =2x — 2z ° = 2y — 8\ — o — =2z
ox oy Y v ° Aydx 0 ox
2 9L %L d
.aLzz_z)\ o — =2 — 8 ° =0 o—gzsy
9z oy? O0z0y Jy
99 99 o
oz oy 0 2z
La hessienne bordée est donc : H = | 29 2°L ’L | =

oz o2 dzxdy
o9  9°L  2°L
oy dyox oy?
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@ Calcul des dérivées secondes :
L(z,y,\) = f(z,y) — Ag(z) = 2? + y* — A(z® + 4y® — 4)

oL oL 921 dg

o — =2x — 2z ° = 2y — 8\ — o — =2z
ox oy Y v ° Aydx 0 ox
2 9L %L d
.aLzz_z)\ o — =2 — 8 ° =0 o—gzsy
9z oy? O0z0y Jy
99 9g I 2,
g2 & 0 2 8y
La hessienne bordée est donc : H = | 29 2°L ’L | =

oz o2 dzxdy
o9  9°L  2°L
oy dyox oy?
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@ Calcul des dérivées secondes :
L(z,y,\) = f(z,y) — Ag(z) = 2? + y* — A(z® + 4y® — 4)

oL oL 921 dg

o — =2x — 2z ° = 2y — 8\ — o — =2z
o oy y y e 0 o
2 9L %L d
oaLzz_z)\ o —— =2 — 8 ° =0 o—g:8y
9z oy? O0z0y Jy
99 99 I 2
e By 0 2x 8y
La hessienne bordée est donc : H = | 29 &°L L | = |9,

oz o2 dzxdy
o9  9°L  2°L
oy dyox oy?
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 92 dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
oaLzz_z)\ — =2 — 8\ ° =0 o—g:8y
9z oy? O0z0y Jy
9g 99 - 2
e By 0 2x 8y
La hessienne bordée est donc : H = | 29 &°L L | =19, 9_9)

oz o2 dzxdy
o9  9°L  2°L
oy dyox oy?
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
oaLzz_z)\ — =2 — 8\ ° =0 o—g:8y
9z oy? O0z0y Jy
9g 99 - 2
e By 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0

99 2°L 9L
oy dyox oy?
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
oaLzz_z)\ — =2 — 8\ ° =0 o—g:8y
9z oy? O0z0y Jy
9g 99 - 2
e By 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0

99 2°L 9L
oy dyox oy? 8y
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
oaLzz_z,\ — =2 — 8\ ° =0 o—g:Sy
9z oy? O0z0y Jy
9g 99 - 2
e By 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0
dg 8%L %L
oy dyox oy? 8y 0
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
o Tk _ 5 _ox — =2-—8X ° =0 o 29 _ gy
9z oy? O0z0y Jy
9g 99 - 2
e By 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0

dg 8%L %L o _
5 Beos o 8y 0 2 — 8\
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
o Tk _ 5 _ox — =2-—8X ° =0 o 29 _ gy
9z oy? O0z0y Jy
9g 99 - 2
e By 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0

dg 8%L %L o _
5 Beos o 8y 0 2 — 8\

|H| =
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + 9y — A(2? + 4y* — 4)

oL 2 2 oL 2 8\
e — = 4 — xT e — = -
oz dy Y Y
9% 3L
o 22 _2_8x
° o =2-2X i
99
oz
La hessienne bordée est donc : H = gQQ
-
o°L.
dydx
|F| = (développement suivant la premiére ligne)

M. Drouot

Differentielle d'ordre 2.

’L _ 0 RCPY.
oydx ox
8L o dg s
= ° =
OJx0y 9y Y
9
G—Z 0 2z 8y
%L | = | 5. ;
2L |=[22 2-20 o
a2 .
575 8y 0 2 — 8\
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
o XL 5 o — =2-—8X ° =0 o 29 _ gy
9z oy? O0z0y Jy
9g 99 )
B 3y 0 2 8y
. p - | 8¢ 8L 2L | = | 9. _

La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0
dg 8%L %L o _
dy  Oyowx oy? 8y 0 2-8X

A= 22 ' +
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
o Tk _ 5 _ox — =2-—8X ° =0 o 29 _ gy
9z oy? O0z0y Jy
99 99 .
B 3y 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0
dg 8%L %L o _
2 e 5 8y 0 2 — 8\
— 2
H| = —22|°" ' +
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
o Tk _ 5 _ox — =2-—8X ° =0 o 29 _ gy
9z oy? O0z0y Jy
99 99 .
B 3y 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0
9g  8%L %L o _
2 e 5 8y 0 2 — 8\
— 2 0
H| = —22|°" ' +
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
o Tk _ 5 _ox — =2-—8X ° =0 o 29 _ gy
9z oy? O0z0y Jy
9g 9g )
B By 0 2x 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0
dg 8%L %L o _
2 e 5 8y 0 2 — 8\
= 2x 0
A= —2| 5 |+
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL oL 2L dg
o — =2z —2)\x o — =2y — 8y ° =0 o — =2z
ox oy Aydx ox
2 9L %L d
oaLzz_z,\ — =2 — 8\ ° =0 o—g:8y
9z oy? O0z0y Jy
dg dg .
B By 0 2 8y
. p - | 8¢ 8L 2L | = | 9. _
La hessienne bordée est donc : H 52 o3 550, 2¢ 2 — 2\ 0
dg 8%L %L )
3y Dyor 097 8y 0 2 — 8\
— 2x 0
[H| = 20 Sy 278)\'—’—
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL 2 2 oL 2 8
@ — — 4 — T e — = —_
ox oy Y v
52L °L
°8w2:2_2/\ oa—yz_2—8>\
9g
oz
La hessienne bordée est donc : H = | 29 2°L
oz dx2
dg 8%L
oy dydx
— 2x 0
|H| = —2z 8y 278)\'—1—814'

M. Drouot

Differentielle d'ordre 2.

%L

Aydx

0°L
Oxdy

99
oy
%L
dzxdy
2°L
oy?

9g
]

dg
]

2—2X 0

— =2z
ox
-~ _8
oy v
8y
2 — 8\
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@ Calcul des dérivées secondes :

L(z,y,\) = f(z,y) — Mg(x) = 2% + y® — A(2? 4+ 4y* — 4)

oL 2 2 oL 2 8
@ — — 4 — T e — = —_
ox oy Y v
52L °L
°8w2:2_2/\ oa—yz_2—8>\
9g
oz
La hessienne bordée est donc : H = | 29 2°L
oz dx2
dg 8%L
oy dydx
— 2x 0 2x
|H| = —2z 8y 2o 8\ ' + Sy'
M. Drouot

Differentielle d'ordre 2.

%L

Aydx

0°L
Oxdy

99
oy
%L
dzxdy
2°L
oy?

9g
]

dg
]

2—2X 0

— =2z
ox
-~ _8
oy v
8y
2 — 8\
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@ Calcul des dérivées secondes :

= f(z,y) — Ag(z) = 2 + y2 — A(x? + 4y? — 4)

OL

o — =2z —2)\x

ox

8%L

ox

La hessienne bordée est donc : H =

|H| =

> =

—2x

L(x,y,\)

=2 -2

2x
8y

oL
o — =2y — 8y °
Oy
9L
o — =2 — 8 °
oy?
99
oz
29  9%L
ox dx2
e} %L
oy dydx
2z 2—2X
M. Drouot

%L

Aydx

0°L
Oxdy

99
oy
%L
dzxdy
2°L
oy?

Differentielle d'ordre 2.

9g
. Y9

dg
0 Y

2—2X 0

=2z
ox
=8
oy v
8y
2 — 8\
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@ Etude des points critiques :
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Donc le point A est un maximum.
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Donc le point b est un maximum.
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—2
aLepointB<0>et)\=l,
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Donc le point b est un maximum.
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Donc le point A est un maximum.
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° LepointA<§> etA=1, [H=8x2(4x1—-1)+128x 0% x (1—1)=96>0
Donc le point A est un maximum.
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° LepointA<§> etA=1, [H=8x2(4x1—-1)+128x 0% x (1—1)=96>0
Donc le point A est un maximum.
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Donc le point b est un maximum.
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Q) |H| =822(4x — 1) + 128y2(A — 1)
@ Etude des points critiques :
° LepointA<§> etA=1, [H=8x2(4x1—-1)+128x 0% x (1—1)=96>0
Donc le point A est un maximum.
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Q) |H| =822(4x — 1) + 128y2(A — 1)
@ Etude des points critiques :

2 _ .
nLepointA<O> etA=1, [H=8x2(4x1—-1)+128x 0% x (1—1)=96>0

Donc le point A est un maximum.
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Donc le point b est un maximum.

Hl=8x(-2)%4x1-1)4+128x0>x(1—-1)=96>0

. 0 1 - ) 1 . (1
o Le point C et A= —, |H|=8x0>(4x - —1)4+128x1*x (- —1)= —-96<0
1 4 4 4
Donc le point A est un minimum.

. 0 1 _
o Le point D et A= —, |H| =
—1 4

. 1 . 1
8x0%(4x=—1 128 x (—1)2 1) =
X <><4 >+ x ( )><(4 )

M. Drouot Differentielle d’ordre 2. 42 /43



|. Différentielle d’ordre 2.

Q) |H| =822(4x — 1) + 128y2(A — 1)
@ Etude des points critiques :
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Donc le point A est un maximum.
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Donc le point b est un maximum.
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Q) |H| =822(4x — 1) + 128y2(A — 1)
@ Etude des points critiques :

2 _ .
nLepointA<O> etA=1, [H=8x2(4x1—-1)+128x 0% x (1—1)=96>0

Donc le point A est un maximum.
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Donc le point b est un maximum.

Hl=8x(-2)%4x1-1)4+128x0>x(1—-1)=96>0

. 0 14 2 1 9 1
o Lepoint O | etk:1,|H|:8><0 Ax 2 -1)+128x 1P x (2 -1)= -96<0
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Exercice n°5 : Détermine |'aire maximal d'un rectangle de périmétre 20.
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Exercice n°6 : Trouve les extrema de f(x,y) = 22 + y2 sous la contrainte = + 2y = 5.
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Exercice n°7 : Trouve les extrema de f(x,y) = = — y sous la contrainte 22 + 2 = 2.

M. Drouot érentielle d'ordre 2. 45 /43




