Dans ce chapitre, nous allons étudier les fonctions de plusieurs variables dans le cadre particulier de \mathbb{R}^2 ou \mathbb{R}^3 , mais également dans le cadre général de \mathbb{R}^n . Ces fonctions seront donc de la forme

$$f:D\subset\mathbb{R}^n\to\mathbb{R},$$

où $n \geqslant 1$ est un entier naturel.

Définition:

D est appelé le

de la fonction.

Dans ce chapitre, nous allons étudier les fonctions de plusieurs variables dans le cadre particulier de \mathbb{R}^2 ou \mathbb{R}^3 , mais également dans le cadre général de \mathbb{R}^n . Ces fonctions seront donc de la forme

$$f:D\subset\mathbb{R}^n\to\mathbb{R},$$

où $n \geqslant 1$ est un entier naturel.

Définition:

D est appelé le domaine de définition de la fonction.

Dans ce chapitre, nous allons étudier les fonctions de plusieurs variables dans le cadre particulier de \mathbb{R}^2 ou \mathbb{R}^3 , mais également dans le cadre général de \mathbb{R}^n . Ces fonctions seront donc de la forme

$$f:D\subset\mathbb{R}^n\to\mathbb{R},$$

où $n \geqslant 1$ est un entier naturel.

Définition:

D est appelé le domaine de définition de la fonction.

Autrement dit, les éléments de l'ensemble de départ D seront des n-uplets du type (x_1,\ldots,x_n) que l'on peut considérer comme des vecteurs, et les éléments de l'ensemble d'arrivée seront des réels.

- I. Fonctions numériques à plusieurs variables.
 - 1. Fonction numérique à une variable n=1 :

1. Fonction numérique à une variable n=1 :

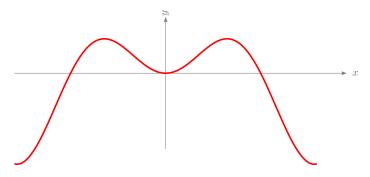
Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$

1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$

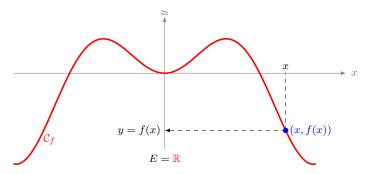
1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$



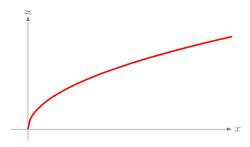
1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$



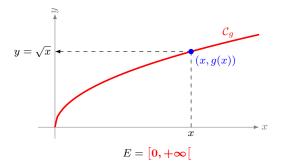
1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$



1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$



1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$

Voici les graphes des fonctions $f: x \longmapsto x \sin(x)$ et $g: x \longmapsto \sqrt{x}$:

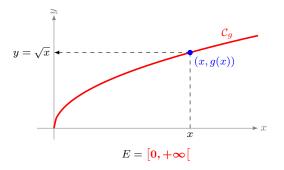


La variable x est libre,

1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$

Voici les graphes des fonctions $f\colon x\longmapsto x\sin(x)$ et $g\colon x\longmapsto \sqrt{x}$:

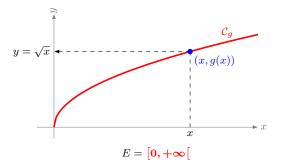


La variable x est libre, alors que la variable y $\big(=f(x)\big)$ ne l'est pas puisqu'elle est fonction de x.

1. Fonction numérique à une variable n=1:

Les fonctions $f\colon\thinspace D\longrightarrow \mathbb{R}$ sont connues depuis le lycée. $x\longmapsto f(x)$

Voici les graphes des fonctions $f\colon x\longmapsto x\sin(x)$ et $g\colon x\longmapsto \sqrt{x}$:



La variable x est **libre**, alors que la variable y $\Big(=f(x)\Big)$ ne l'est pas puisqu'elle est fonction de x. La courbe obtenue est de dimension $\mathbf{1}$.

- I. Fonctions numériques à plusieurs variables.
 - 2. Fonction numérique à deux variables n=2.

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon\thinspace D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon\thinspace D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables $oldsymbol{x}$ et $oldsymbol{y}$

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon\thinspace D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables \boldsymbol{x} et \boldsymbol{y} sont libres,

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon\thinspace D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables ${\pmb x}$ et ${\pmb y}$ sont libres, alors que la variable z=f(x,y) ne l'est pas puisqu'elle est fonction de ${\pmb x}$ et ${\pmb y}$.

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon\thinspace D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables x et y sont libres, alors que la variable z = f(x, y) ne l'est pas puisqu'elle est fonction de x et y. La surface obtenue est de dimension 2.

Exemples:

$$\begin{array}{cccc} \mathsf{Consid\acute{e}rons} \; \mathsf{Ia} \; \mathsf{fonction} \; f : \begin{bmatrix} 0 \, ; \, 4 \end{bmatrix} \times \begin{bmatrix} -4 \, ; \, 4 \end{bmatrix} & \longrightarrow & \begin{bmatrix} 0 \, , \, +\infty[\\ & 4 & \\ & 1 + x^2 + y^2 \end{array} \end{array}$$

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables x et y sont libres, alors que la variable z = f(x, y) ne l'est pas puisqu'elle est fonction de x et y. La surface obtenue est de dimension 2.

Exemples:

$$\begin{array}{cccc} \text{Considérons la fonction } f: \left[0\,;\,4\right] \times \left[\,-\,4\,;\,4\right] & \longrightarrow & \left[0\,,\,+\infty\right[\\ & \left(x\,,\,y\right) & \longmapsto & \frac{4}{1+x^2+y^2} \end{array}$$

• La variable x prend toutes les valeurs situées dans l'intervalle

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables x et y sont libres, alors que la variable z = f(x, y) ne l'est pas puisqu'elle est fonction de x et y. La surface obtenue est de dimension 2.

Exemples:

$$\begin{array}{cccc} \mathsf{Consid\acute{e}rons} \; \mathsf{Ia} \; \mathsf{fonction} \; f : \begin{bmatrix} 0 \, ; \, 4 \end{bmatrix} \times \begin{bmatrix} -\,4 \, ; \, 4 \end{bmatrix} & \longrightarrow & \begin{bmatrix} 0 \, , \, +\infty[\\ & 4 & \\ \hline & 1 + x^2 + y^2 \end{array}$$

ullet La variable x prend toutes les valeurs situées dans l'intervalle $egin{bmatrix} oldsymbol{0} \ ; \ oldsymbol{4} \end{bmatrix}$

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables x et y sont libres, alors que la variable z = f(x, y) ne l'est pas puisqu'elle est fonction de x et y. La surface obtenue est de dimension 2.

Exemples:

$$\begin{array}{cccc} \mathsf{Consid\acute{e}rons} \; \mathsf{Ia} \; \mathsf{fonction} \; f : \begin{bmatrix} 0 \, ; \, 4 \end{bmatrix} \times \begin{bmatrix} -\,4 \, ; \, 4 \end{bmatrix} & \longrightarrow & \begin{bmatrix} 0 \, , \, +\infty[\\ & 4 & \\ \hline & 1 + x^2 + y^2 \end{array}$$

- La variable x prend toutes les valeurs situées dans l'intervalle [0; 4]
- ullet La variable y prend toutes les valeurs situées dans l'intervalle

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables x et y sont libres, alors que la variable z = f(x, y) ne l'est pas puisqu'elle est fonction de x et y. La surface obtenue est de dimension 2.

Exemples:

 $\begin{array}{cccc} \text{Considérons la fonction } f: \left[0\,;\,4\right] \times \left[\,-\,4\,;\,4\right] & \longrightarrow & \left[0\,,\,+\infty\right[\\ & \left(x\,,\,y\right) & \longmapsto & \frac{4}{1+x^2+y^2} \end{array}$

- La variable x prend toutes les valeurs situées dans l'intervalle [0; 4]
- ullet La variable y prend toutes les valeurs situées dans l'intervalle $igl[-\mathbf{4}\,;\,\mathbf{4} igr]$

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables x et y sont libres, alors que la variable z=f(x,y) ne l'est pas puisqu'elle est fonction de x et y. La surface obtenue est de dimension 2

Exemples:

Considérons la fonction $f: [0\,;\,4] \times [\,-4\,;\,4] \longrightarrow [0\,,\,+\infty[$ $(x\,,\,y) \longmapsto \frac{4}{1+x^2+y^2}$

- La variable x prend toutes les valeurs situées dans l'intervalle [0; 4]
- ullet La variable y prend toutes les valeurs situées dans l'intervalle $igl[-\mathbf{4}\,;\,\mathbf{4} igr]$
- $\bullet \ \left[0\,;\,4\right]\times\left[\,-\,4\,;\,4\right] \ \mathrm{est}$

2. Fonction numérique à deux variables n=2.

Les fonctions $f\colon D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ sont représentées par des surfaces. $(x,y)\longmapsto f(x,y)$

Les variables x et y sont libres, alors que la variable z=f(x,y) ne l'est pas puisqu'elle est fonction de x et y. La surface obtenue est de dimension 2

Exemples:

Considérons la fonction $f: [0\,;\,4] \times [\,-4\,;\,4] \longrightarrow [0\,,\,+\infty[$ $(x\,,\,y) \longmapsto \frac{4}{1+x^2+y^2}$

- ullet La variable x prend toutes les valeurs situées dans l'intervalle $lgloon 0 ; oldsymbol{4}$
- ullet La variable y prend toutes les valeurs situées dans l'intervalle $igl[-4\,;\, 4igr]$
- $[0;4] \times [-4;4]$ est le domaine de définition de la fonction f.

- I. Fonctions numériques à plusieurs variables.
 - 3. Représentation graphique.

3. Représentation graphique.

Pour chaque valeur de x, f est fonction de y.

3. Représentation graphique.

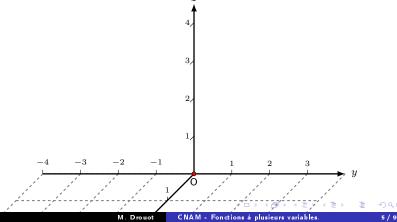
Pour chaque valeur de x, f est fonction de y. Fixons x=0 on a f(0,y)=

3. Représentation graphique.

Pour chaque valeur de $x,\,f$ est fonction de y. Fixons x=0 on a $f(0,y)=\cfrac{4}{1+y^2}$

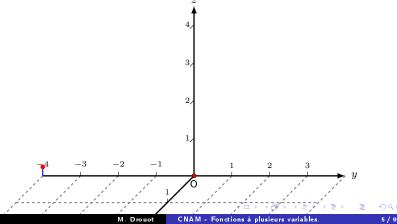
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0, y)									



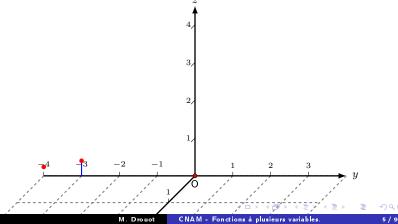
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24								



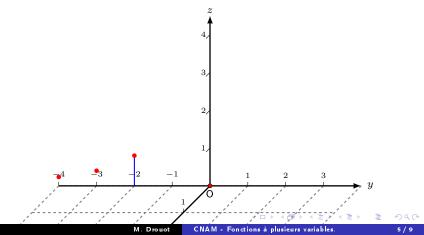
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40							



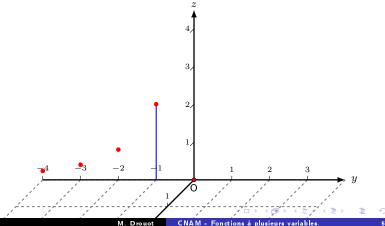
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8						



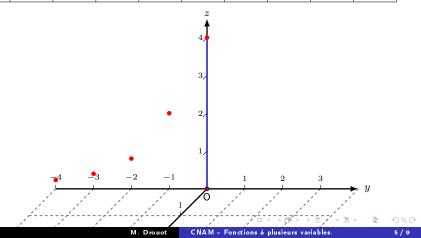
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8	2					



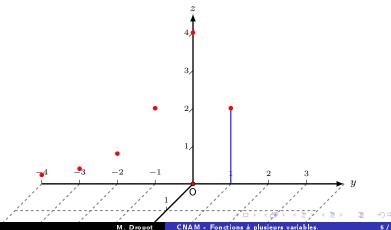
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8	2	4				



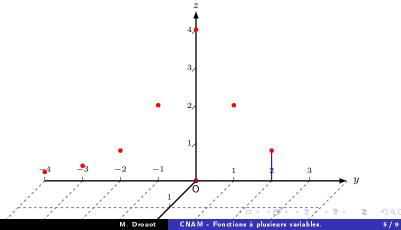
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8	2	4	2			



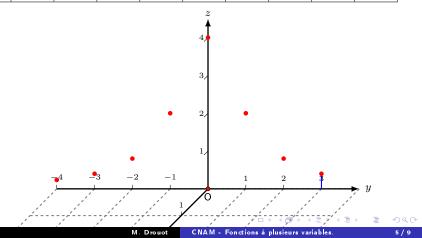
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8	2	4	2	0,8		



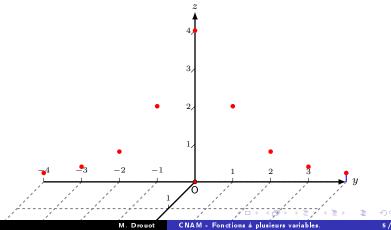
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8	2	4	2	0,8	0,4	



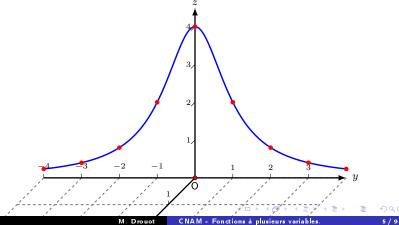
3. Représentation graphique.

y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8	2	4	2	0,8	0,4	0,24



3. Représentation graphique.

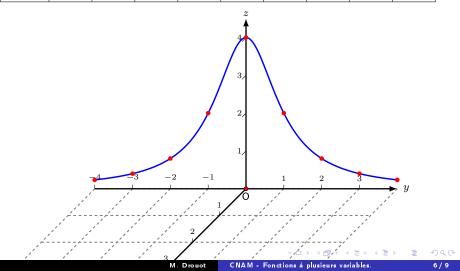
y	-4	-3	-2	-1	0	1	2	3	4
f(0,y)	0,24	0,40	0,8	2	4	2	0,8	0,4	0,24



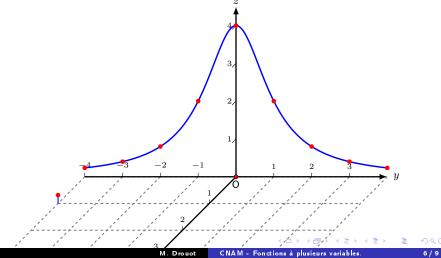
Fixons x=1 on a f(1,y)= on a f(1,y)=

Fixons
$$x=1$$
 on a $f(1,y)=$ on a $f(1,y)=\frac{\mathbf{4}}{\mathbf{2}+\mathbf{y}^2}$

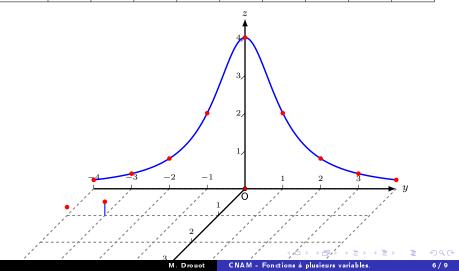
y	-4	-3	-2	-1	0	1	2	3	4
f(1, y)									



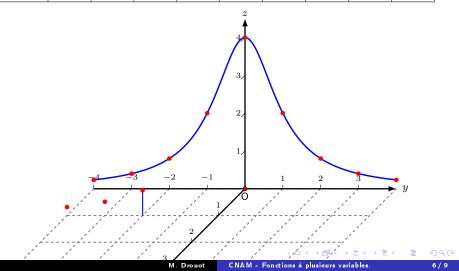
y	-4	-3	-2	-1	0	1	2	3	4
f(1,y)	0,22								



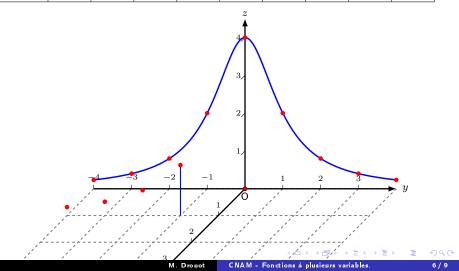
y	-4	-3	-2	-1	0	1	2	3	4
f(1,y)	0,22	0,36							



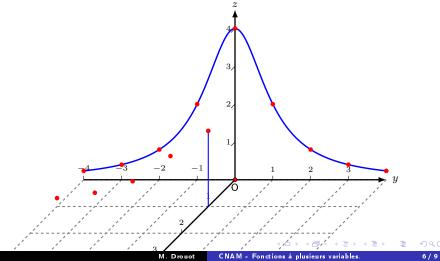
y	-4	-3	-2	-1	0	1	2	3	4
f(1,y)	0,22	0,36	0,67						



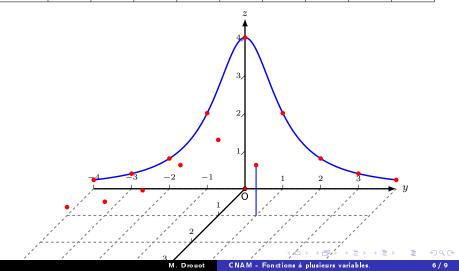
y	-4	-3	-2	-1	0	1	2	3	4
f(1, y)	0,22	0,36	0,67	1,33					



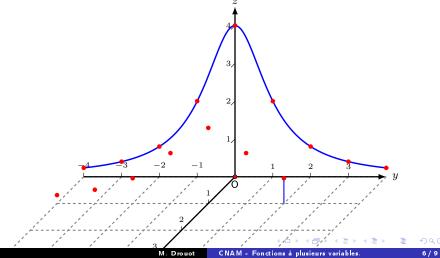
y	-4	-3	-2	-1	0	1	2	3	4
f(1, y)	0,22	0,36	0,67	1,33	2				



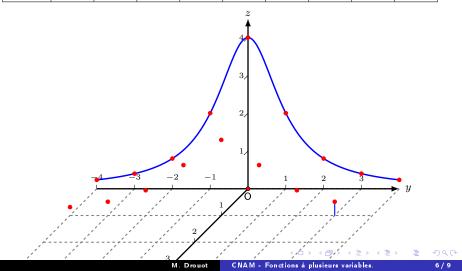
y	-4	-3	-2	-1	0	1	2	3	4
f(1,y)	0,22	0,36	0,67	1,33	2	1,33			



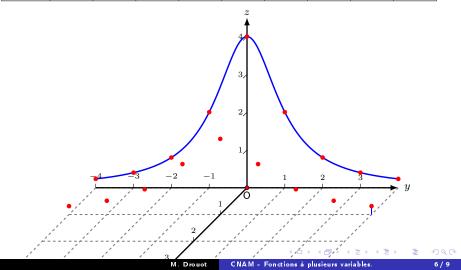
y	-4	-3	-2	-1	0	1	2	3	4
f(1, y)	0,22	0,36	0,67	1,33	2	1,33	0,67		



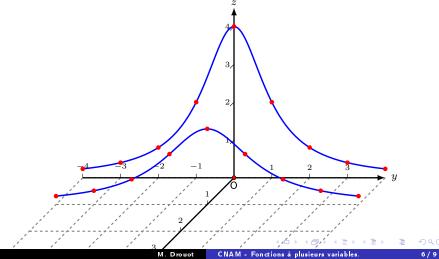
y	-4	-3	-2	-1	0	1	2	3	4
f(1,y)	0,22	0,36	0,67	1,33	2	1,33	0,67	0,36	



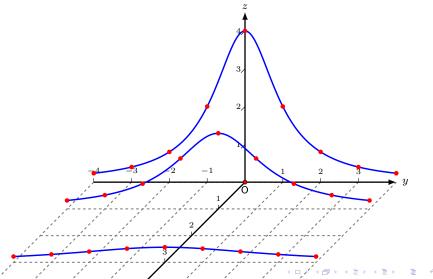
y	-4	-3	-2	-1	0	1	2	3	4
f(1,y)	0,22	0,36	0,67	1,33	2	1,33	0,67	0,36	0,22



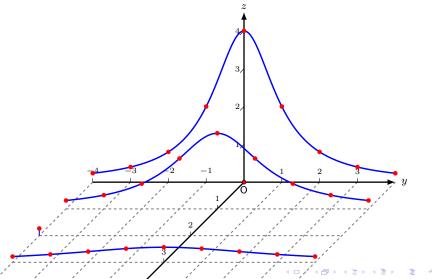
y	-4	-3	-2	-1	0	1	2	3	4
f(1,y)	0,22	0,36	0,67	1,33	2	1,33	0,67	0,36	0,22



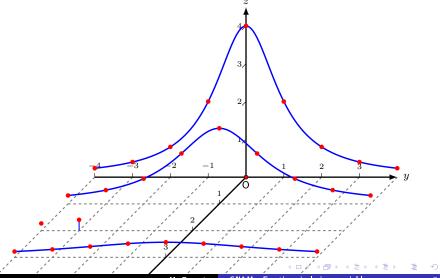
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)									



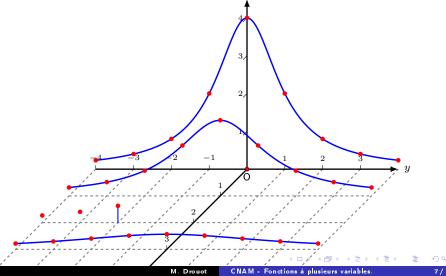
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19								



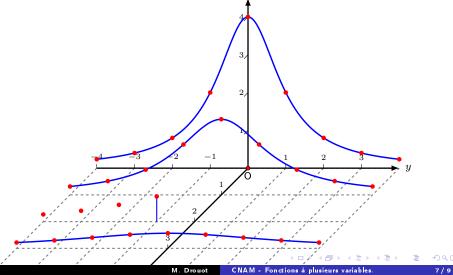
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29							



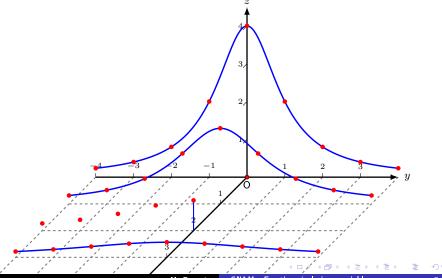
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29	0,44						



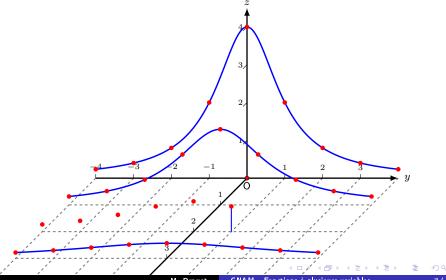
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29	0,44	0,67					



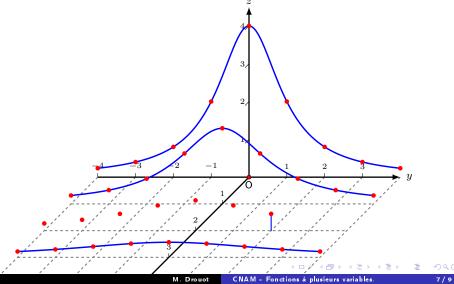
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29	0,44	0,67	0,8				



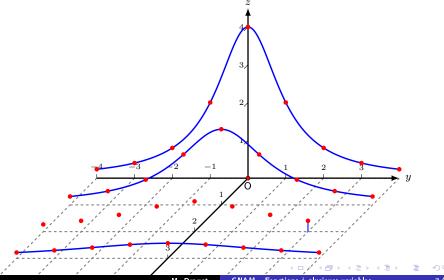
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29	0,44	0,67	0,8	0,67			



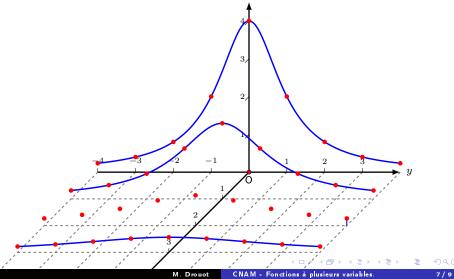
	-4							4
f(2,y)	0,19	0,29	0,44	0,67	0,8	0,67	0,44	



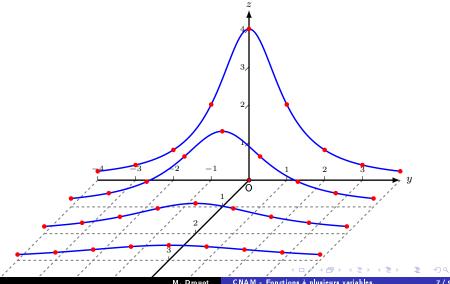
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29	0,44	0,67	0,8	0,67	0,44	0,29	

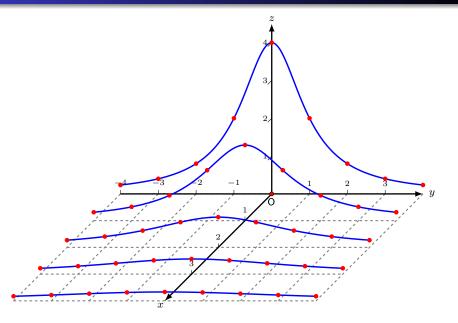


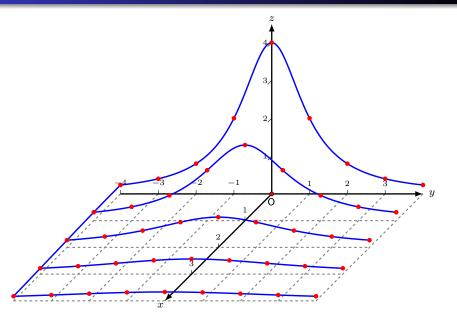
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29	0,44	0,67	0,8	0,67	0,44	0,29	0,19

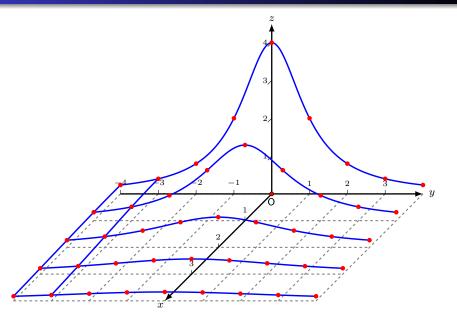


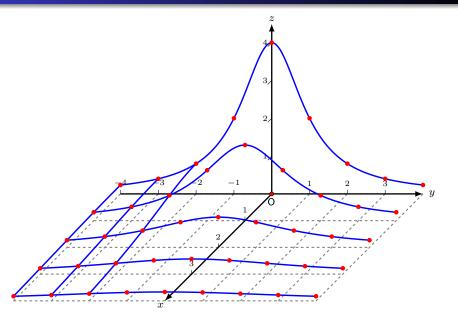
y	-4	-3	-2	-1	0	1	2	3	4
f(2,y)	0,19	0,29	0,44	0,67	0,8	0,67	0,44	0,29	0,19

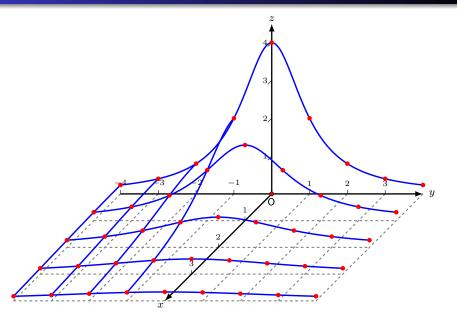


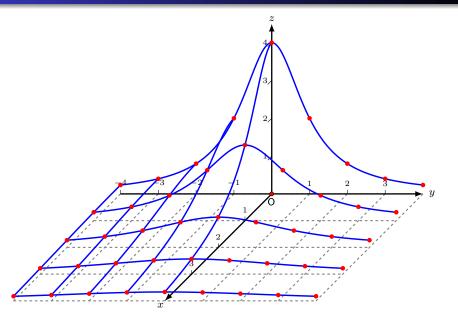


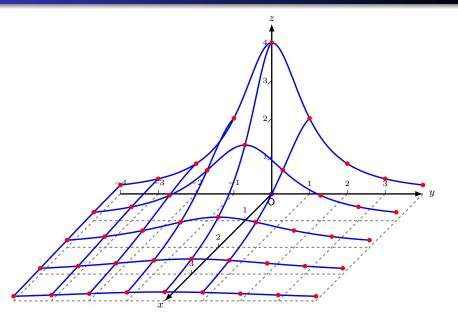


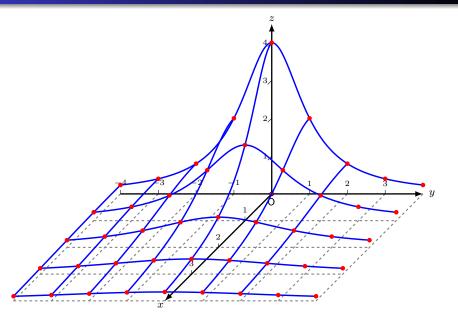


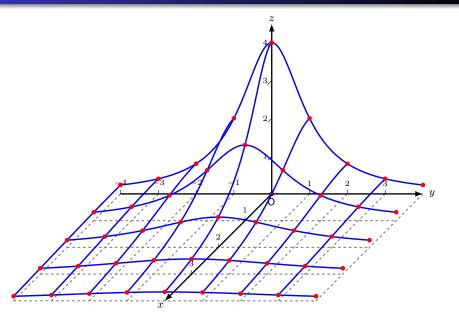


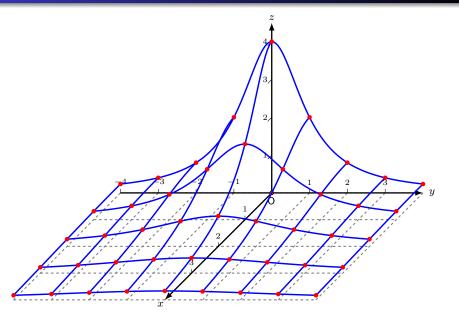


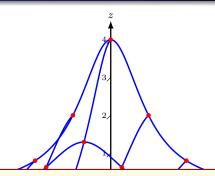












🗓 Définition:

Lorsque (x,y) parcourt le domaine de définition de f, l'ensemble des points de coordonnées (x,y,f(x,y)) forme une **surface**.

