Fiche ►Formes bilinéaires et formes quadratiques

Définition:

Etant donné un espace vectoriel E,

- ullet une application linéaire $E\longrightarrow \mathbb{R}$ est appelée une forme linéaire ;
- L'ensemble des formes linéaires forment un espace vectoriel noté ${m E}^*$ et appelé l'espace dual de E.

Définition:

Etant donné un espace vectoriel E,

- ullet une application linéaire $E\longrightarrow \mathbb{R}$ est appelée une forme linéaire ;
- L'ensemble des formes linéaires forment un espace vectoriel noté E^* et appelé l'espace dual de E.

Dans $E=\mathbb{R}^n$ muni d'une base $(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n})$, une forme linéaire est un endomorphisme

$$f: E \longrightarrow \mathbb{R} \text{ et } \max_{\mathcal{E}, \mathbb{R}} (f) = \begin{pmatrix} f\left(\overrightarrow{e_1}\right) & f\left(\overrightarrow{e_2}\right) & \cdots & f\left(\overrightarrow{e_n}\right) \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

Définition:

Etant donné un espace vectoriel E,

- ullet une application linéaire $E\longrightarrow \mathbb{R}$ est appelée une forme linéaire ;
- L'ensemble des formes linéaires forment un espace vectoriel noté E^* et appelé l'espace dual de E.

Dans $E=\mathbb{R}^n$ muni d'une base $(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n})$, une forme linéaire est un endomorphisme

$$f: E \longrightarrow \mathbb{R} \text{ et } \max_{\mathcal{E}, \mathbb{R}}(f) = \begin{pmatrix} f\left(\overrightarrow{e_1}\right) & f\left(\overrightarrow{e_2}\right) & \cdots & f\left(\overrightarrow{e_n}\right) \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

Les matrices des formes linéaires sont des matrices lignes.

Applications	Formes linéaires	Matrice a	associées
f(x, y, z) = 2x + 3y - 4z		()
g(x, y, z) = x + 3y - z		()
$h(x,y) = x^2 - y$		()
i(x,y) = 3x		(
j(x,y) = 3x + y		(
k(x,y) = 3x + 1		(
$\ell(a, b, c, d) = a - c + 2d - 3b$		()
m(a, b, c, d) = a + b - c + cd		()
n(x, y, z) = 0		()
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		()

Applications	Formes linéaires	Matrice a	associées
f(x, y, z) = 2x + 3y - 4z	O ui	()
g(x, y, z) = x + 3y - z		()
$h(x,y) = x^2 - y$		()
i(x,y) = 3x		()
j(x,y) = 3x + y		()
k(x,y) = 3x + 1		()
$\ell(a, b, c, d) = a - c + 2d - 3b$		()
m(a, b, c, d) = a + b - c + cd		()
n(x, y, z) = 0		()
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \blacklozenge, \blacksquare) = \blacklozenge - \blacksquare$		()

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	(2 3 4)
g(x, y, z) = x + 3y - z		
$h(x,y) = x^2 - y$		
i(x,y) = 3x		
j(x,y) = 3x + y		
k(x,y) = 3x + 1		
$\ell(a, b, c, d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \blacklozenge, \blacksquare) = \blacklozenge - \blacksquare$		()

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	
$h(x,y) = x^2 - y$		
i(x,y) = 3x		
j(x,y) = 3x + y		
k(x,y) = 3x + 1		
$\ell(a, b, c, d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		()
o(x, y, z) = -4		
$p(\blacktriangle, \blacklozenge, \blacklozenge, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	(2 3 4)
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$		
i(x,y) = 3x		
j(x,y) = 3x + y		
k(x,y) = 3x + 1		()
$\ell(a, b, c, d) = a - c + 2d - 3b$		()
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		()
o(x, y, z) = -4		
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	
i(x,y) = 3x		
j(x,y) = 3x + y		
k(x,y) = 3x + 1		
$\ell(a, b, c, d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \blacklozenge, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x		
j(x,y) = 3x + y		
k(x,y) = 3x + 1		
$\ell(a,b,c,d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		()
n(x, y, z) = 0		()
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	
j(x,y) = 3x + y		
k(x,y) = 3x + 1		
$\ell(a, b, c, d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		()
n(x, y, z) = 0		()
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	(2 3 4)
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y		
k(x,y) = 3x + 1		
$\ell(a, b, c, d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \blacklozenge, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	Oui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	
k(x,y) = 3x + 1		
$\ell(a, b, c, d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		()
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		()

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	(2 3 4)
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1		
$\ell(a,b,c,d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	
$\ell(a,b,c,d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a, b, c, d) = a - c + 2d - 3b$		
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \blacklozenge, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	Oui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	(3 1)
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a,b,c,d) = a - c + 2d - 3b$	O ui	
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a, b, c, d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd		
n(x, y, z) = 0		
o(x, y, z) = -4		
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a,b,c,d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd	Non	()
n(x, y, z) = 0		()
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	(3 1)
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a,b,c,d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd	Non	(pas de matrice)
n(x, y, z) = 0		()
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a,b,c,d) = a - c + 2d - 3b$	O ui	
m(a, b, c, d) = a + b - c + cd	Non	(pas de matrice)
n(x, y, z) = 0	O ui	
o(x, y, z) = -4		()
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		()

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	(3 1)
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a,b,c,d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd	Non	(pas de matrice)
n(x, y, z) = 0	O ui	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
o(x, y, z) = -4		
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	(3 1)
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a,b,c,d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd	Non	(pas de matrice)
n(x, y, z) = 0	O ui	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
o(x, y, z) = -4	Non	
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a, b, c, d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd	Non	(pas de matrice)
n(x, y, z) = 0	O ui	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
o(x, y, z) = -4	Non	(pas de matrice)
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$		

Applications	Formes linéaires	Matrice associées
f(x,y,z) = 2x + 3y - 4z	O ui	(2 3 4)
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a, b, c, d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd	Non	(pas de matrice)
n(x, y, z) = 0	O ui	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
o(x, y, z) = -4	Non	(pas de matrice)
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$	O ui	

Applications	Formes linéaires	Matrice associées
f(x, y, z) = 2x + 3y - 4z	O ui	(2 3 4)
g(x, y, z) = x + 3y - z	O ui	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$
$h(x,y) = x^2 - y$	Non	(pas de matrice)
i(x,y) = 3x	O ui	$\begin{pmatrix} 3 & 0 \end{pmatrix}$
j(x,y) = 3x + y	O ui	$\begin{pmatrix} 3 & 1 \end{pmatrix}$
k(x,y) = 3x + 1	Non	(pas de matrice)
$\ell(a, b, c, d) = a - c + 2d - 3b$	O ui	$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix}$
m(a, b, c, d) = a + b - c + cd	Non	(pas de matrice)
n(x, y, z) = 0	O ui	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
o(x, y, z) = -4	Non	(pas de matrice)
$p(\blacktriangle, \blacklozenge, \bullet, \blacksquare) = \blacklozenge - \blacksquare$	O ui	$\begin{pmatrix} 0 & 1 & 0 & -1 \end{pmatrix}$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i(\overrightarrow{e_j})=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i(\overrightarrow{e_j})=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice (

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right)=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice ($oxed{2}$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right)=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right)=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

'Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i(\overrightarrow{e_j})=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

$$f(4,5,6) = f(\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3})$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i(\overrightarrow{e_j})=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

$$f(4,5,6) = f(4\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3})$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i(\overrightarrow{e_j})=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + \overrightarrow{e_3})$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E}=\left(e^1,e^2,\ldots,e^n\right)$ où chaque forme linéaire e^i est définie par $e^i(\overrightarrow{e_j})=\begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

$$f(4,5,6) = f(\mathbf{4}\overrightarrow{e_1} + \mathbf{5}\overrightarrow{e_2} + \mathbf{6}\overrightarrow{e_3})$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \ldots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a, b, c) = 2a - b + c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e}_1 + 5\overrightarrow{e}_2 + 6\overrightarrow{e}_3) = ($$
)

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \dots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j \\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a, b, c) = 2a - b + c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f\left(\mathbf{4}\overrightarrow{e_1} + \mathbf{5}\overrightarrow{e_2} + \mathbf{6}\overrightarrow{e_3}\right) = \begin{pmatrix} \mathbf{2} & -\mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \end{pmatrix}$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \ldots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = \begin{pmatrix} 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \ldots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = \begin{pmatrix} 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} =$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \ldots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f\left(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}\right) = \begin{pmatrix} 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 6$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \ldots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a, b, c) = 2a - b + c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \ldots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a, b, c) = 2a - b + c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 =$$

Théorème

Etant donné un espace vectoriel E est de dimension finie, et une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$ de \mathcal{E} , la famille des formes linéaires $\mathcal{E} = \left(e^1, e^2, \ldots, e^n\right)$ où chaque forme linéaire e^i est définie par $e^i\left(\overrightarrow{e_j}\right) = \begin{cases} 1 \text{ si } i=j\\ 0 \text{ sinon} \end{cases}$ est une base de l'espace dual de E.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c) = 2a - b + c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f=\mathbf{2}e^1+(-1)e^2+1e^3$ car :

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = \mathbf{2}e^1 + (-1)e^2 + \mathbf{1}e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=}=c$$

$$donc\ f\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)$$

M. Drouot CNAM

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=}=c$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=}=c$$

M. Drouot CNAM

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=}=c$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=}=c$$

M. Drouot CNAM - A

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=}=c$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=}=c$$

M. Drouot C

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=c$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=c$$

M. Drouot CNAM - A

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{1}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=c$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=c$$



Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = \mathbf{2}e^1 + (-1)e^2 + \mathbf{1}e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=c$$

$$donc\ f\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)$$

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = \mathbf{2}e^1 + (-1)e^2 + \mathbf{1}e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=c$$

$$donc\ f\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)$$



Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = \mathbf{2}e^1 + (-1)e^2 + \mathbf{1}e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=c$$

$$donc\ f\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)$$

Bases duales.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{1}}=c$$

$$donc\ f\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)$$



Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{1}}=c$$

$$donc\ f\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)$$

$$=2\ldots+\left(-1\right)\ldots+1\ldots$$

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c) = 2a - b + c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=a\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{1}}=c$$

$$donc\ f\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)$$

$$=2a+(-1)\ldots+1\ldots$$

M. Drouot CNAI

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c) = 2a - b + c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = 2e^1 + (-1)e^2 + 1e^3$ car :

$$e^{1}(\overrightarrow{ae_{1}} + \overrightarrow{be_{2}} + \overrightarrow{ce_{3}}) = \underbrace{a}\underbrace{e^{1}(\overrightarrow{e_{1}}) + b}_{=1}\underbrace{e^{1}(\overrightarrow{e_{2}}) + c}_{=0}\underbrace{e^{1}(\overrightarrow{e_{3}})}_{=0} = a$$

$$e^{2}(\overrightarrow{ae_{1}} + \overrightarrow{be_{2}} + \overrightarrow{ce_{3}}) = \underbrace{a}\underbrace{e^{2}(\overrightarrow{e_{1}}) + b}_{=0}\underbrace{e^{2}(\overrightarrow{e_{2}}) + c}_{=1}\underbrace{e^{2}(\overrightarrow{e_{3}})}_{=0} = b$$

$$e^{3}(\overrightarrow{ae_{1}} + \overrightarrow{be_{2}} + \overrightarrow{ce_{3}}) = \underbrace{a}\underbrace{e^{3}(\overrightarrow{e_{1}}) + b}_{=0}\underbrace{e^{3}(\overrightarrow{e_{2}}) + c}_{=0}\underbrace{e^{3}(\overrightarrow{e_{3}})}_{=1} = c$$

$$e^{3}(\overrightarrow{ae_{1}} + \overrightarrow{be_{2}} + \overrightarrow{ce_{3}}) = \underbrace{a}\underbrace{e^{3}(\overrightarrow{e_{1}}) + b}_{=0}\underbrace{e^{3}(\overrightarrow{e_{2}}) + c}_{=0}\underbrace{e^{3}(\overrightarrow{e_{3}})}_{=1} = c$$

$$e^{3}(\overrightarrow{ae_{1}} + \overrightarrow{be_{2}} + \overrightarrow{ce_{3}}) = \underbrace{a}\underbrace{e^{3}(\overrightarrow{e_{1}}) + b}\underbrace{e^{3}(\overrightarrow{e_{2}}) + c}\underbrace{e^{3}(\overrightarrow{e_{3}})}_{=1} = c$$

$$e^{3}(\overrightarrow{ae_{1}} + \overrightarrow{be_{2}} + \overrightarrow{ce_{3}}) = \underbrace{a}\underbrace{e^{3}(\overrightarrow{e_{1}}) + b}\underbrace{e^{3}(\overrightarrow{e_{2}}) + c}\underbrace{e^{3}(\overrightarrow{e_{3}})}_{=1} = c$$

$$e^{3}(\overrightarrow{ae_{1}} + \overrightarrow{be_{2}} + \overrightarrow{ce_{3}}) = \underbrace{a}\underbrace{e^{3}(\overrightarrow{e_{1}}) + b}\underbrace{e^{3}(\overrightarrow{e_{2}}) + c}\underbrace{e^{3}(\overrightarrow{e_{3}})}_{=1} = c$$

Bases duales.

Exemple nº 2 : Considérons dans la base $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 ,

la forme linéaire f(a,b,c)=2a-b+c a pour matrice $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$.

$$f(4,5,6) = f(4\overrightarrow{e_1} + 5\overrightarrow{e_2} + 6\overrightarrow{e_3}) = (2 -1 1) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 8 - 5 + 6 = 9.$$

Dans la base duale de \mathcal{E} , la forme linéaire f s'écrit $f = \mathbf{2}e^1 + (-1)e^2 + \mathbf{1}e^3$ car :

$$e^{1}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=\underbrace{a}\underbrace{e^{1}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{1}}+b\underbrace{e^{1}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{1}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=a$$

$$e^{2}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=\underbrace{a}\underbrace{e^{2}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{2}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{2}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{0}}=b$$

$$e^{3}\left(a\overrightarrow{e_{1}}+b\overrightarrow{e_{2}}+c\overrightarrow{e_{3}}\right)=\underbrace{a}\underbrace{e^{3}\left(\overrightarrow{e_{1}}\right)}_{=\mathbf{0}}+b\underbrace{e^{3}\left(\overrightarrow{e_{2}}\right)}_{=\mathbf{0}}+c\underbrace{e^{3}\left(\overrightarrow{e_{3}}\right)}_{=\mathbf{1}}=c$$

$$=2a+(-1)b+1c$$

$$df(x,y) = \frac{\partial f}{\partial x}(x,y)dx + \frac{\partial f}{\partial y}(x,y)dy$$

$$\mathrm{d}f(x,y)=\frac{\partial f}{\partial x}(x,y)\mathrm{d}x+\frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y)=x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y)=$

Ainsi, pour
$$f(x,y)=x^3y^2$$
 on a : $\dfrac{\partial f}{\partial x}(x,y)=$

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{3}x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{3}x^2y^2$

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{3}x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{2}x^3y$

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{3}x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{2}x^3y$ et $\mathrm{d}f(x,y) = \dots \dots \, \mathrm{d}x + \dots \dots \, \mathrm{d}y = \dots \dots \, e^1 + \dots \dots \, e^2$

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{3}x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{2}x^3y$ et $\mathrm{d}f(x,y) = \mathbf{3}x^2y^2\,\mathrm{d}x + \dots$ e¹ + \dots e²

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{3}x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{2}x^3y$ et $\mathrm{d}f(x,y) = \mathbf{3}x^2y^2\,\mathrm{d}x + \mathbf{2}x^3y\,\mathrm{d}y = \dots e^1 + \dots e^2$

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = 3x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = 2x^3y$ et $\mathrm{d}f(x,y) = 3x^2y^2\,\mathrm{d}x + 2x^3y\,\mathrm{d}y = 3x^2y^2e^1 + \dots e^2$

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = 3x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = 2x^3y$ et $\mathrm{d}f(x,y) = 3x^2y^2\,\mathrm{d}x + 2x^3y\,\mathrm{d}y = 3x^2y^2e^1 + 2x^3ye^2$

$$\begin{split} \mathrm{d}f(x,y)&=\frac{\partial f}{\partial x}(x,y)\mathrm{d}x+\frac{\partial f}{\partial y}(x,y)\mathrm{d}y\\ \\ \mathrm{Ainsi,\ pour\ }f(x,y)&=x^3y^2\ \mathrm{on\ a}:\frac{\partial f}{\partial x}(x,y)=\mathbf{3}x^2y^2\ \mathrm{et\ }\frac{\partial f}{\partial y}(x,y)=\mathbf{2}x^3y\\ \\ \mathrm{et\ }\mathrm{d}f(x,y)&=\mathbf{3}x^2y^2\ \mathrm{d}x+\mathbf{2}x^3y\ \mathrm{d}y=\mathbf{3}x^2y^2e^1+\mathbf{2}x^3ye^2\\ \\ \mathrm{Ainsi,\ la\ différent\ ielle\ }\mathrm{de\ }f\ \mathrm{au\ point\ }(1,2)\ \mathrm{est\ la\ forme\ lin\'eaire}:\mathrm{d}f(1,2)= \end{split}$$

$$df(x,y) = \frac{\partial f}{\partial x}(x,y)dx + \frac{\partial f}{\partial y}(x,y)dy$$

et
$$df(x,y) = 3x^2y^2 dx + 2x^3y dy = 3x^2y^2e^1 + 2x^3ye^2$$

et
$$df(1,2) \begin{pmatrix} a \\ b \end{pmatrix} =$$

$$df(x,y) = \frac{\partial f}{\partial x}(x,y)dx + \frac{\partial f}{\partial y}(x,y)dy$$

$$\mathrm{d}f(x,y) = \frac{\partial f}{\partial x}(x,y)\mathrm{d}x + \frac{\partial f}{\partial y}(x,y)\mathrm{d}y$$
 Ainsi, pour $f(x,y) = x^3y^2$ on a : $\frac{\partial f}{\partial x}(x,y) = 3x^2y^2$ et $\frac{\partial f}{\partial y}(x,y) = 2x^3y$ et $\mathrm{d}f(x,y) = 3x^2y^2\,\mathrm{d}x + 2x^3y\,\mathrm{d}y = 3x^2y^2e^1 + 2x^3ye^2$ Ainsi, la différentielle de f au point $(1,2)$ est la forme linéaire : $\mathrm{d}f(1,2) = 12e^1 + 4e^2$, et $\mathrm{d}f(1,2) \begin{pmatrix} a \\ b \end{pmatrix} = 12a + 4b$.

et
$$df(x,y) = 3x^2y^2 dx + 2x^3y dy = 3x^2y^2e^1 + 2x^3ye^2$$

et
$$df(1,2) \begin{pmatrix} a \\ b \end{pmatrix} = \mathbf{12}a + \mathbf{4}b$$
.

II. Formes bilinéaires.

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

•
$$f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

$$\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

Autrement dit, les fonctions $f_1\colon E\longrightarrow \mathbb{R}$ et $f_2\colon E\longrightarrow \mathbb{R}$ sont linéaires. $\overrightarrow{u}\longmapsto f(\overrightarrow{u},\overrightarrow{v})$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

- $\bullet \ f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$
- $\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$

Autrement dit, les fonctions $f_1\colon E\longrightarrow \mathbb{R}$ et $f_2\colon E\longrightarrow \mathbb{R}$ sont linéaires. $\overrightarrow{u}\longmapsto f(\overrightarrow{u},\overrightarrow{v})$

Exemple n° 4: le produit scalaire $f\colon E\times E\longrightarrow \mathbb{R}$ est une application bilinéaire : $(\overrightarrow{u},\overrightarrow{v})\longmapsto \overrightarrow{u}\cdot\overrightarrow{v}$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

$$\bullet \ f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

$$\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

Autrement dit, les fonctions $f_1\colon E\longrightarrow \mathbb{R}$ et $f_2\colon E\longrightarrow \mathbb{R}$ sont linéaires. $\overrightarrow{u}\longmapsto f(\overrightarrow{u},\overrightarrow{v})$

Exemple n° 4 : le produit scalaire $f\colon \stackrel{E\times E}{(\stackrel{\longrightarrow}{u},\stackrel{\nearrow}{v})} \mapsto \stackrel{\mathbb{R}}{u}\cdot \stackrel{\text{est une application bilinéaire}}{}$

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = (a\overrightarrow{u_1} + b\overrightarrow{u_2}) \cdot \overrightarrow{v} =$$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

$$\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

Autrement dit, les fonctions $f_1\colon E\longrightarrow \mathbb{R}$ et $f_2\colon E\longrightarrow \mathbb{R}$ sont linéaires. $\overrightarrow{u}\longmapsto f(\overrightarrow{u},\overrightarrow{v})$

Exemple n° 4 : le produit scalaire $f\colon E\times E\longrightarrow \mathbb{R}$ est une application bilinéaire : $(\overrightarrow{u},\overrightarrow{v})\longmapsto \overrightarrow{u}\cdot\overrightarrow{v}$

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = (a\overrightarrow{u_1} + b\overrightarrow{u_2}) \cdot \overrightarrow{v} = a\overrightarrow{u_1} \cdot \overrightarrow{v} + b\overrightarrow{u_2} \cdot \overrightarrow{v}$$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

$$\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

Autrement dit, les fonctions $f_1\colon E\longrightarrow \mathbb{R}$ et $f_2\colon E\longrightarrow \mathbb{R}$ sont linéaires. $\overrightarrow{u}\longmapsto f(\overrightarrow{u},\overrightarrow{v})$

Exemple n° 4: le produit scalaire $f\colon E\times E\longrightarrow \mathbb{R}$ est une application bilinéaire : $(\overrightarrow{u},\overrightarrow{v})\longmapsto \overrightarrow{u}\cdot\overrightarrow{v}$

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = (a\overrightarrow{u_1} + b\overrightarrow{u_2}) \cdot \overrightarrow{v} = a\overrightarrow{u_1} \cdot \overrightarrow{v} + b\overrightarrow{u_2} \cdot \overrightarrow{v}$$

= $af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$

•
$$f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) =$$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

$$\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

Autrement dit, les fonctions $f_1\colon E\longrightarrow \mathbb{R}$ et $f_2\colon E\longrightarrow \mathbb{R}$ sont linéaires. $\overrightarrow{u}\longmapsto f(\overrightarrow{u},\overrightarrow{v})$

Exemple n° 4: le produit scalaire $f\colon E\times E\longrightarrow \mathbb{R}$ est une application bilinéaire : $(\overrightarrow{u},\overrightarrow{v})\longmapsto \overrightarrow{u}\cdot\overrightarrow{v}$

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = (a\overrightarrow{u_1} + b\overrightarrow{u_2}) \cdot \overrightarrow{v} = a\overrightarrow{u_1} \cdot \overrightarrow{v} + b\overrightarrow{u_2} \cdot \overrightarrow{v}$$

= $af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$

•
$$f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = \overrightarrow{u} \cdot (a\overrightarrow{v_1} + b\overrightarrow{v_2}) =$$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

$$\bullet \ f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

$$\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

Autrement dit, les fonctions $f_1 \colon \xrightarrow{E} \longrightarrow \mathbb{R}$ et $f_2 \colon \xrightarrow{E} \longrightarrow \mathbb{R}$ sont linéaires.

Exemple n° 4 : le produit scalaire $f\colon E\times E\longrightarrow \mathbb{R}$ est une application bilinéaire : $(\overrightarrow{u},\overrightarrow{v})\longmapsto \overrightarrow{u}\cdot\overrightarrow{v}$

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = (a\overrightarrow{u_1} + b\overrightarrow{u_2}) \cdot \overrightarrow{v} = a\overrightarrow{u_1} \cdot \overrightarrow{v} + b\overrightarrow{u_2} \cdot \overrightarrow{v}$$

= $af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$

$$\bullet \ f\left(\overrightarrow{u},a\overrightarrow{v_1}+b\overrightarrow{v_2}\right) = \overrightarrow{u}\cdot\left(a\overrightarrow{v_1}+b\overrightarrow{v_2}\right) = a\overrightarrow{u}\cdot\overrightarrow{v_1}+b\overrightarrow{u}\cdot\overrightarrow{v_2}$$

En algèbre, les formes sont des applications à valeurs numériques, pour nous, réelles.

Définition:

Soit E un espace vectoriel de dimension finie sur $\mathbb R$. Une forme **bilinéaire** sur E est une application $f:E\times E\longrightarrow \mathbb R$ qui satisfait :

$$\bullet \ f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$$

$$\bullet \ f(\overrightarrow{u}, a\overrightarrow{v_1} + b\overrightarrow{v_2}) = af(\overrightarrow{u}, \overrightarrow{v_1}) + bf(\overrightarrow{u}, \overrightarrow{v_2})$$

Autrement dit, les fonctions $f_1 \colon \xrightarrow{E} \longrightarrow \mathbb{R}$ et $f_2 \colon \xrightarrow{E} \longrightarrow \mathbb{R}$ sont linéaires.

Exemple n° 4: le produit scalaire $f\colon E\times E\longrightarrow \mathbb{R}$ est une application bilinéaire : $(\overrightarrow{u},\overrightarrow{v})\longmapsto \overrightarrow{u}\cdot\overrightarrow{v}$

•
$$f(a\overrightarrow{u_1} + b\overrightarrow{u_2}, \overrightarrow{v}) = (a\overrightarrow{u_1} + b\overrightarrow{u_2}) \cdot \overrightarrow{v} = a\overrightarrow{u_1} \cdot \overrightarrow{v} + b\overrightarrow{u_2} \cdot \overrightarrow{v}$$

= $af(\overrightarrow{u_1}, \overrightarrow{v}) + bf(\overrightarrow{u_2}, \overrightarrow{v})$

Etant donné un espace vectoriel E de dimension n, muni d'une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2},\ldots,\overrightarrow{e_n}\right)$, considérons les deux vecteurs $\overrightarrow{u}=a_1\overrightarrow{e_1}+\ldots+a_n\overrightarrow{e_n}$ et $+\overrightarrow{v}=b_1\overrightarrow{e_1}+\ldots+b_n\overrightarrow{e_n}$, alors :

Etant donné un espace vectoriel E de dimension n, muni d'une base $\mathcal{E} = (\overrightarrow{e1}, \overrightarrow{e2}, \dots, \overrightarrow{en})$, considérons les deux vecteurs $\overrightarrow{u} = a_1 \overrightarrow{e1} + \dots + a_n \overrightarrow{en}$ et $+\overrightarrow{v} = b_1 \overrightarrow{e1} + \dots + b_n \overrightarrow{en}$, alors :

$$f(\overrightarrow{u}, \overrightarrow{v}) = f(a_1 \overrightarrow{e_1} + \ldots + a_n \overrightarrow{e_n}, b_1 \overrightarrow{e_1} + \ldots + b_n \overrightarrow{e_n})$$

Etant donné un espace vectoriel E de dimension n, muni d'une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$, considérons les deux vecteurs $\overrightarrow{u} = a_1\overrightarrow{e_1} + \ldots + a_n\overrightarrow{e_n}$ et $+\overrightarrow{v} = b_1\overrightarrow{e_1} + \ldots + b_n\overrightarrow{e_n}$, alors :

$$f(\overrightarrow{u}, \overrightarrow{v}) = f(a_1 \overrightarrow{e_1} + \dots + a_n \overrightarrow{e_n}, b_1 \overrightarrow{e_1} + \dots + b_n \overrightarrow{e_n})$$

$$= a_1 b_1 f(\overrightarrow{e_1}, \overrightarrow{e_1}) + a_1 b_2 f(\overrightarrow{e_1}, \overrightarrow{e_2}) + \dots + a_n b_n f(\overrightarrow{e_n}, \overrightarrow{e_n})$$

Etant donné un espace vectoriel E de dimension n, muni d'une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$, considérons les deux vecteurs $\overrightarrow{u} = a_1\overrightarrow{e_1} + \ldots + a_n\overrightarrow{e_n}$ et $+\overrightarrow{v} = b_1\overrightarrow{e_1} + \ldots + b_n\overrightarrow{e_n}$, alors :

$$egin{aligned} f(\overrightarrow{u},\overrightarrow{v}) &= fig(a_1\overrightarrow{e_1} + \ldots + a_n\overrightarrow{e_n},\,b_1\overrightarrow{e_1} + \ldots + b_n\overrightarrow{e_n}ig) \ &= a_1b_1fig(\overrightarrow{e_1},\overrightarrow{e_1}ig) + a_1b_2fig(\overrightarrow{e_1},\overrightarrow{e_2}ig) + \ldots + a_nb_nfig(\overrightarrow{e_n},\overrightarrow{e_n}ig) \ &= \sum_{i,j=1}^n a_ib_jfig(\overrightarrow{e_i},\overrightarrow{e_j}ig) \end{aligned}$$

Etant donné un espace vectoriel E de dimension n, muni d'une base $\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}\right)$, considérons les deux vecteurs $\overrightarrow{u} = a_1\overrightarrow{e_1} + \ldots + a_n\overrightarrow{e_n}$ et $+\overrightarrow{v} = b_1\overrightarrow{e_1} + \ldots + b_n\overrightarrow{e_n}$, alors :

$$egin{aligned} f(\overrightarrow{u},\overrightarrow{v}) &= fig(a_1\overrightarrow{e_1} + \ldots + a_n\overrightarrow{e_n},\,b_1\overrightarrow{e_1} + \ldots + b_n\overrightarrow{e_n}ig) \ &= a_1b_1fig(\overrightarrow{e_1},\overrightarrow{e_1}ig) + a_1b_2fig(\overrightarrow{e_1},\overrightarrow{e_2}ig) + \ldots + a_nb_nfig(\overrightarrow{e_n},\overrightarrow{e_n}ig) \ &= \sum\limits_{i,j=1}^n a_ib_jfig(\overrightarrow{e_i},\overrightarrow{e_j}ig) \end{aligned}$$

Ainsi, f est entièrement déterminée par la donnée des n^2 valeurs $(\overrightarrow{e_i}, \overrightarrow{e_i})$ d'où le théorème :

Si b une forme bilinéaire définie sur un espace vectoriel E de dimension n muni d'une base $\mathcal{E} = \left(\overrightarrow{e_i}\right)_{i=1,\dots,n}$, et B la matrice $\left(b\left(\overrightarrow{e_i},\overrightarrow{e_j}\right)\right)_{i,j=1,\dots,n}$, alors : $f\left(\overrightarrow{u},\overrightarrow{v}\right) = {}^{t}\left[\overrightarrow{u}\right]_{\mathcal{E}} B\left[\overrightarrow{v}\right]_{\mathcal{E}}$

$$\mathcal{E} = \left(\overrightarrow{e_i^t}\right)_{i=1,\dots,n}, \text{ et } B \text{ la matrice } \left(b(\overrightarrow{e_i^t},\overrightarrow{e_j^t})\right)_{i,j=1,\dots,n}, \text{ alors } : f(\overrightarrow{u},\overrightarrow{v}) = {}^{\boldsymbol{t}} [\overrightarrow{\boldsymbol{u}}]_{\boldsymbol{\mathcal{E}}} \boldsymbol{B} [\overrightarrow{\boldsymbol{v}}]_{\boldsymbol{\mathcal{E}}}$$

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} & & \\ & & \end{pmatrix}$

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ \end{pmatrix}$

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \end{pmatrix}$

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \end{pmatrix}$

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

$$b(\overrightarrow{u}, \overrightarrow{v}) = {}^{t}[\overrightarrow{u}]_{\mathcal{E}}B[\overrightarrow{v}]_{\mathcal{E}} =$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

$$b(\overrightarrow{u},\overrightarrow{v}) = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} B \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} = \begin{pmatrix} \boldsymbol{x} & \boldsymbol{y} \end{pmatrix} \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{pmatrix} \begin{pmatrix} \boldsymbol{x'} \\ \boldsymbol{y'} \end{pmatrix} =$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

$$b(\overrightarrow{u},\overrightarrow{v}) = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} B \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} =$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

$$b(\overrightarrow{u},\overrightarrow{v}) = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} B \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = xx' + yy'$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $\bullet \ \, \text{Consid\'erons les deux vecteurs} \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \text{et} \ \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$

$$b(\overrightarrow{u},\overrightarrow{v}) = {}^t [\overrightarrow{u}]_{\mathcal{E}} B[\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = xx' + yy'$$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

 $\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$ forme une base de \mathbb{R}^2 car

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

- $\bullet \ \, \text{Consid\'erons les deux vecteurs} \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \text{et} \ \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$
 - $b(\overrightarrow{u},\overrightarrow{v})={}^t[\overrightarrow{u}]_{\mathcal{E}}B[\overrightarrow{v}]_{\mathcal{E}}=egin{pmatrix} x&yiggl(egin{pmatrix} 1&0\0&1 \end{pmatrix}iggl(egin{pmatrix} x'\y' \end{pmatrix}=&\left(x&y
 ight)iggl(egin{pmatrix} x'\y' \end{pmatrix}=xx'+yy'$
- ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} =$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

- $\bullet \ \, \text{Consid\'erons les deux vecteurs } \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$
 - $b(\overrightarrow{u},\overrightarrow{v}) = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} B \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = xx' + yy'$
- ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.



Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $\bullet \ \, \text{Considérons les deux vecteurs } \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \, \text{et } \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$

$$b(\overrightarrow{u},\overrightarrow{v}) = {}^t [\overrightarrow{u}]_{\mathcal{E}} B[\overrightarrow{v}]_{\mathcal{E}} = (\boldsymbol{x} \quad \boldsymbol{y}) \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{pmatrix} \begin{pmatrix} \boldsymbol{x'} \\ \boldsymbol{y'} \end{pmatrix} = (\boldsymbol{x} \quad \boldsymbol{y}) \begin{pmatrix} \boldsymbol{x'} \\ \boldsymbol{y'} \end{pmatrix} = \boldsymbol{x}\boldsymbol{x'} + \boldsymbol{y}\boldsymbol{y'}$$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\left(\begin{array}{cc} \end{array}\right)$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $\bullet \ \, \text{Considérons les deux vecteurs} \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \text{et} \ \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$

$$b(\overrightarrow{u},\overrightarrow{v})={}^t[\overrightarrow{u}]_{\mathcal{E}}B[\overrightarrow{v}]_{\mathcal{E}}=egin{pmatrix} x&yiggl(egin{pmatrix} 1&0\0&1 \end{pmatrix}iggl(egin{pmatrix} x'\y' \end{pmatrix}=iggl(x&y)iggl(egin{pmatrix} x'\y' \end{pmatrix}=xx'+yy'$$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

- $\bullet \ \, \text{Consid\'erons les deux vecteurs } \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$
 - $b(\overrightarrow{u},\overrightarrow{v})={}^t[\overrightarrow{u}]_{\mathcal{E}}B[\overrightarrow{v}]_{\mathcal{E}}=egin{pmatrix} x&yiggl(egin{pmatrix} 1&0\0&1 \end{pmatrix}iggl(egin{pmatrix} x'\y' \end{pmatrix}=iggl(x&y)iggl(egin{pmatrix} x'\y' \end{pmatrix}=xx'+yy'$
- ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

La matrice de passage de la base ${\cal E}$ à la base ${\cal F}$ est $P_{\cal E}^{{\cal F}}=egin{pmatrix} {f 2} \\ {f 2} \end{pmatrix}$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $\bullet \ \, \text{Consid\'erons les deux vecteurs} \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \text{et} \ \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$

$$b(\overrightarrow{u},\overrightarrow{v}) = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} B \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = xx' + yy'$$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=egin{pmatrix} [f_1]_{\mathcal E}\\ 2\\ -1 \end{pmatrix}$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $\bullet \ \, \text{Considérons les deux vecteurs} \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \text{et} \ \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$

$$b(\overrightarrow{u},\overrightarrow{v})={}^t[\overrightarrow{u}]_{\mathcal{E}}B[\overrightarrow{v}]_{\mathcal{E}}=egin{pmatrix} x&yigg)igg(egin{matrix} 1&0\0&1igg)igg(oldsymbol{x'}\y'\end{pmatrix}=ig(oldsymbol{x}&oldsymbol{y'}igg)=oldsymbol{xx'}+yy'$$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

 $[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$ La matrice de passage de la base \mathcal{E} à la base \mathcal{F} est $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} \\ -\mathbf{1} \end{pmatrix}$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $\bullet \ \, \text{Considérons les deux vecteurs} \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \text{et} \ \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$

$$b(\overrightarrow{u},\overrightarrow{v})={}^t[\overrightarrow{u}]_{\mathcal{E}}B[\overrightarrow{v}]_{\mathcal{E}}=egin{pmatrix} x&yigg)igg(egin{matrix} 1&0\0&1igg)igg(oldsymbol{x'}\y'\end{pmatrix}=ig(oldsymbol{x}&oldsymbol{y'}igg)=oldsymbol{xx'}+yy'$$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\begin{pmatrix} [\overrightarrow{f_1}]_{\mathcal E} & [\overrightarrow{f_2}]_{\mathcal E} \\ -1 & \end{pmatrix}$.

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $\bullet \ \, \text{Considérons les deux vecteurs} \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix} \ \text{et} \ \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix} :$

$$b(\overrightarrow{u},\overrightarrow{v})={}^t[\overrightarrow{u}]_{\mathcal{E}}B[\overrightarrow{v}]_{\mathcal{E}}=egin{pmatrix} x&yiggl(egin{pmatrix} 1&0\0&1 \end{pmatrix}iggl(egin{pmatrix} x'\y' \end{pmatrix}=iggl(x&y)iggl(egin{pmatrix} x'\y' \end{pmatrix}=xx'+yy'$$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F} = (\overrightarrow{f_1}, \overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F} = \begin{pmatrix} [\overrightarrow{f_1}]_{\mathcal E} & [\overrightarrow{f_2}]_{\mathcal E} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}$.

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

• Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $\begin{vmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{vmatrix} = \mathbf{3} \neq \mathbf{0}$.

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F} = \begin{pmatrix} \overline{[f_2]}_{\mathcal E} & [\overline{f_2}]_{\mathcal E} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}$.

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

- Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:
 - $\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$ forme une base de \mathbb{R}^2 car $egin{bmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}=\mathbf{3}
 eq \mathbf{0}.$

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F} = \begin{pmatrix} \overrightarrow{f_1}_{\mathcal E} & \overrightarrow{f_2}_{\mathcal E} \\ \mathbf 2 & \mathbf 1 \\ -\mathbf 1 & \mathbf 1 \end{pmatrix}$.

ullet Déterminons l'expression du produit scalaire dans la base ${\cal F}$:

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

- ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:
 - $\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$ forme une base de \mathbb{R}^2 car $egin{bmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}=\mathbf{3}
 eq \mathbf{0}.$

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\begin{pmatrix} \overrightarrow{f_1}_{\mathcal E} & \overrightarrow{f_2}_{\mathcal E}\\ \mathbf 1 & \mathbf 1 \end{pmatrix}$.

$$\begin{split} \overrightarrow{u} \cdot \overrightarrow{v} &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{E}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \big[\overrightarrow{v} \big]_{\mathcal{E}} &= \underbrace{{}^t \Big(\dots \big[\overrightarrow{u} \big]_{\mathcal{F}} \Big)}_{\big[\overrightarrow{u} \big]_{\mathcal{E}}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \underbrace{\Big(\dots \big[\overrightarrow{v} \big]_{\mathcal{F}} \Big)}_{\big[\overrightarrow{v} \big]_{\mathcal{E}}} \\ &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{F}} \dots \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \dots \big[\overrightarrow{v} \big]_{\mathcal{F}} \end{split}$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $egin{bmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}=\mathbf{3}
eq \mathbf{0}.$

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\begin{pmatrix} \overrightarrow{f_1}_{\mathcal E} & \overrightarrow{f_2}_{\mathcal E}\\ \mathbf 1 & \mathbf 1 \end{pmatrix}$.

$$\begin{split} \overrightarrow{u} \cdot \overrightarrow{v} &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{E}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \big[\overrightarrow{v} \big]_{\mathcal{E}} &= \underbrace{ \underbrace{ \left(\underbrace{P_{\mathcal{E}}^{\mathcal{F}} \big[\overrightarrow{u} \big]_{\mathcal{F}}} \right)}_{\big[\overrightarrow{u} \big]_{\mathcal{E}}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \underbrace{ \left(\ldots \big[\overrightarrow{v} \big]_{\mathcal{F}} \right)}_{\big[\overrightarrow{v} \big]_{\mathcal{E}}} \end{split}$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

- ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:
 - $\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$ forme une base de \mathbb{R}^2 car $egin{bmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}=\mathbf{3}
 eq \mathbf{0}.$

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\begin{pmatrix} \overrightarrow{f_1}_{\mathcal E} & \overrightarrow{f_2}_{\mathcal E}\\ \mathbf 1 & \mathbf 1 \end{pmatrix}$.

$$\begin{split} \overrightarrow{u} \cdot \overrightarrow{v} &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{E}} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \big[\overrightarrow{v} \big]_{\mathcal{E}} &= \underbrace{ \underbrace{ \left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}}} \big[\overrightarrow{u} \big]_{\mathcal{F}} \right)}_{\big[\overrightarrow{u} \big]_{\mathcal{E}}} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \underbrace{ \left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}}} \big[\overrightarrow{v} \big]_{\mathcal{F}} \right)}_{\big[\overrightarrow{v} \big]_{\mathcal{E}}} \end{split}$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire b est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $egin{bmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}=\mathbf{3}
eq \mathbf{0}.$

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\begin{pmatrix} \overrightarrow{f_1}_{\mathcal E} & \overrightarrow{f_2}_{\mathcal E}\\ \mathbf 1 & \mathbf 1 \end{pmatrix}$.

$$\begin{split} \overrightarrow{u} \cdot \overrightarrow{v} &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{E}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \big[\overrightarrow{v} \big]_{\mathcal{E}} &= \underbrace{ \underbrace{ \left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}}} \big[\overrightarrow{u} \big]_{\mathcal{F}} \right)}_{\big[\overrightarrow{u} \big]_{\mathcal{E}}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \underbrace{ \left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}}} \big[\overrightarrow{v} \big]_{\mathcal{F}} \right)}_{\big[\overrightarrow{v} \big]_{\mathcal{E}}} \end{split}$$

$$= {}^t \big[\overrightarrow{u} \big]_{\mathcal{F}} \underbrace{ \ldots \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \ldots}_{\underbrace{\mathfrak{F}}} \big[\overrightarrow{v} \big]_{\mathcal{F}}$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $egin{bmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}=\mathbf{3}
eq \mathbf{0}.$

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\begin{pmatrix} \overrightarrow{f_1}_{\mathcal E} & \overrightarrow{f_2}_{\mathcal E}\\ \mathbf 1 & \mathbf 1 \end{pmatrix}$.

$$\begin{split} \overrightarrow{u} \cdot \overrightarrow{v} &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{E}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \big[\overrightarrow{v} \big]_{\mathcal{E}} = \underbrace{\underbrace{\left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}} \big[\overrightarrow{u} \big]_{\mathcal{F}}} \right)}_{\big[\overrightarrow{u} \big]_{\mathcal{E}}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \underbrace{\left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}} \big[\overrightarrow{v} \big]_{\mathcal{F}}} \right)}_{\big[\overrightarrow{v} \big]_{\mathcal{E}}} \\ &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{F}} \underbrace{\underbrace{\left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}} \big[\overrightarrow{v} \big]_{\mathcal{F}}} \right) \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \dots}_{\mathcal{E}} \big[\overrightarrow{v} \big]_{\mathcal{F}}}_{\mathcal{E}} \end{split}$$

Exemple nº 5 : Considérons une base orthonormée $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de l'espace vectoriel \mathbb{R}^2 , et notons b le produit

scalaire. La matrice de la forme bilinéaire
$$b$$
 est $B = \begin{pmatrix} \overrightarrow{e_1} \cdot \overrightarrow{e_1} & \overrightarrow{e_1} \cdot \overrightarrow{e_2} \\ \overrightarrow{e_2} \cdot \overrightarrow{e_1} & \overrightarrow{e_2} \cdot \overrightarrow{e_2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$

ullet Considérons les deux vecteurs $\overrightarrow{f_1}=2\overrightarrow{e_1}-\overrightarrow{e_2}$ et $\overrightarrow{f_2}=\overrightarrow{e_1}+\overrightarrow{e_2}$:

$$\mathcal{F}=(\overrightarrow{f_1},\overrightarrow{f_2})$$
 forme une base de \mathbb{R}^2 car $egin{bmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}=\mathbf{3}
eq \mathbf{0}.$

La matrice de passage de la base $\mathcal E$ à la base $\mathcal F$ est $P_{\mathcal E}^{\mathcal F}=\begin{pmatrix} \overrightarrow{f_1}_{\mathcal E} & \overrightarrow{f_2}_{\mathcal E}\\ \mathbf 1 & \mathbf 1 \end{pmatrix}$.

$$\begin{split} \overrightarrow{u} \cdot \overrightarrow{v} &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{E}} \times \mathsf{mat}(b) \times \big[\overrightarrow{v} \big]_{\mathcal{E}} = \underbrace{\underbrace{\left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}} \big[\overrightarrow{u} \big]_{\mathcal{F}}} \right)}_{\big[\overrightarrow{u} \big]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}} \big[\overrightarrow{v} \big]_{\mathcal{F}}} \right)}_{\big[\overrightarrow{v} \big]_{\mathcal{E}}} \end{split} \\ &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{F}} \underbrace{\underbrace{\left(\underbrace{P^{\mathcal{F}}_{\mathcal{E}} \big[\overrightarrow{v} \big]_{\mathcal{F}}} \right) \times \mathsf{mat}(b) \times P^{\mathcal{F}}_{\mathcal{E}}}_{\mathcal{E}} \big[\overrightarrow{v} \big]_{\mathcal{F}}} \end{split}$$

Exemple no 5:

emple n° 5:
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{z} & \overrightarrow{f_2} \\ \mathbf{z} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$$

$$\begin{split} \overrightarrow{u} \cdot \overrightarrow{v} &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{E}} \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \big[\overrightarrow{v} \big]_{\mathcal{E}} &= \underbrace{ \left(\underbrace{P_{\mathcal{E}}^{\mathcal{F}} \big[\overrightarrow{u} \big]_{\mathcal{F}}}_{\left[\overrightarrow{u} \right]_{\mathcal{F}}} \right) \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times \underbrace{ \left(\underbrace{P_{\mathcal{E}}^{\mathcal{F}} \big[\overrightarrow{v} \big]_{\mathcal{F}}}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \right) } \\ &= {}^t \big[\overrightarrow{u} \big]_{\mathcal{F}} \underbrace{ \left(\underbrace{P_{\mathcal{E}}^{\mathcal{F}} \big) \times \underset{\mathcal{E}}{\operatorname{mat}}(b) \times P_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}}}_{\underbrace{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \right]_{\mathcal{F}}} \end{split}$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{2} & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{2} & \overrightarrow{f_2} \\ -1 & 1 \end{pmatrix}.$$

$$[\overline{f_1}]_{\mathcal{E}} \quad [\overline{f_2}]_{\mathcal{E}}$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1'} \\ \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

•
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{J}^{2} | \mathbf{\varepsilon} \\ \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$$
• Déterminons l'expression du produit scalaire dans la base \mathcal{F} :
$$\overrightarrow{u} \cdot \overrightarrow{v} = {}^{t} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} = \underbrace{{}^{t} \begin{pmatrix} \mathbf{P}_{\mathcal{E}}^{\mathcal{T}} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}}} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \underbrace{\begin{pmatrix} \mathbf{P}_{\mathcal{E}}^{\mathcal{T}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}} \\ \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} \end{pmatrix} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \underbrace{\begin{pmatrix} \mathbf{P}_{\mathcal{E}}^{\mathcal{T}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}} \\ \end{bmatrix}_{\mathcal{F}}$$

$$= {}^{t} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(\mathbf{P}_{\mathcal{E}}^{\mathcal{T}}) \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}} \\ \underset{\mathcal{F}}{\mathsf{mat}}(b)$$

$$\mathsf{Donc}, \ \underset{\mathcal{F}}{\mathsf{mat}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ -1 & 1 \end{pmatrix}$$

•
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$$
• Déterminons l'expression du produit scalaire dans la base \mathcal{F} :
$$\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} \times \max_{\mathcal{E}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} = \underbrace{{}^t \begin{pmatrix} \mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}}}_{\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}}} \times \max_{\mathcal{E}}(b) \times \underbrace{\begin{pmatrix} \mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}}_{\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}}}$$

$$= {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}}) \times \max_{\mathcal{E}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}}}_{\mathbf{E}^{\mathcal{F}}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$$

$$= {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}}) \times \max_{\mathcal{E}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}^{\mathcal{F}}}}_{\mathbf{E}^{\mathcal{F}}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$$

$$= {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}}) \times \max_{\mathcal{E}^{\mathcal{F}}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}^{\mathcal{F}}}}_{\mathbf{E}^{\mathcal{F}}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$$

$$= {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}}) \times \max_{\mathcal{E}^{\mathcal{F}}}(b) \times \mathbf{P}_{\mathcal{E}^{\mathcal{F}}}}_{\mathcal{F}^{\mathcal{F}}}}_{\mathbf{E}^{\mathcal{F}}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$$

$$= {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}}) \times \max_{\mathcal{E}^{\mathcal{F}}}(b) \times \mathbf{P}_{\mathcal{E}^{\mathcal{F}}}}_{\mathcal{F}^{\mathcal{F}}}}_{\mathbf{E}^{\mathcal{F}}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}}_{\mathbf{E}^{\mathcal{F}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{\mathcal{F}}}_{\mathbf{E}^{$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$$

$$\bullet \ \mathsf{Déterminons} \ \mathsf{l'expression} \ \mathsf{du} \ \mathsf{produit} \ \mathsf{scalaire} \ \mathsf{dans} \ \mathsf{la} \ \mathsf{base} \ \mathcal{F} :$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \left[\overrightarrow{u} \right]_{\mathcal{E}} \times \mathsf{mat}(b) \times \left[\overrightarrow{v} \right]_{\mathcal{E}} = \underbrace{{}^t \left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{u} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{u} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{E}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{F}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{F}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}} \right)}_{\left[\overrightarrow{v} \right]_{\mathcal{F}}} \times \mathsf{mat}(b) \times \underbrace{\left(\mathbf{P}_{\mathcal{F}}^{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}}$$

Exemple no 5:

emple n° 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$

On se place dans la base ${\mathcal E}$ car elle est orthonormale :

$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}}$$
 $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}}$

$$= {}^{t} \left[\overrightarrow{u} \right]_{\mathcal{F}} \underbrace{\underbrace{\left(\boldsymbol{P}_{\mathcal{E}}^{\mathcal{F}} \right) \times \max_{\mathcal{E}} (b) \times \boldsymbol{P}_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}}}_{\text{mat}(b)}$$

$$\mathop{\mathcal{F}}_{\mathcal{F}}^{\mathsf{mat}(b)}$$

$$\mathsf{Donc},\, \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \mathsf{mat}_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} \\ \\ \end{pmatrix}$$

Exemple no 5:

emple
$$\mathbf{n}^{o}$$
 5:
$$\mathbf{p}_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{pmatrix}_{\mathcal{E}} \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathcal{E}}$$

On se place dans la base $\mathcal E$ car elle est orthonormale : on a : $\overrightarrow{f_1} \cdot \overrightarrow{f_1} =$

on a
$$\overrightarrow{f_1} \cdot \overrightarrow{f_1}$$
 =

$$\left[\overrightarrow{u}\right]_{\mathcal{E}}$$
 $\left[\overrightarrow{v}\right]_{\mathcal{E}}$

$$= {}^{t} \left[\overrightarrow{u} \right]_{\mathcal{F}} \underbrace{\underbrace{\left(\boldsymbol{\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}} \right) \times \max_{\mathcal{E}} (b) \times \boldsymbol{\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}}}_{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}}}_{\text{mat}(b)}$$

$$\max_{\mathcal{F}}(b)$$

$$\mathsf{Donc},\, \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \mathsf{mat}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} \\ \\ \end{pmatrix}$$

Exemple no 5:

emple n° 5:
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{e} \end{pmatrix}_{\mathcal{E}} \begin{bmatrix} \overrightarrow{f_2} \\ \mathbf{e} \end{bmatrix}_{\mathcal{E}}$$
 • $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{e} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$.

On se place dans la base $\mathcal E$ car elle est orthonormale : on a $:\overrightarrow{f_1} \cdot \overrightarrow{f_1} = 2 \times 2 + (-1) \times (-1) =$

on a :
$$\overrightarrow{f_1} \cdot \overrightarrow{f_1} = 2 imes 2 + (-1) imes (-1)$$
 =

$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} & \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} \\ = {}^{t} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(P_{\mathcal{E}}^{\mathcal{F}}) \times \max_{\mathcal{E}}(b) \times P_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} \\ \\ \max_{\mathcal{F}}(b) \end{bmatrix}_{\mathcal{F}}$$
 Donc, $\max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$ Vérifions : $\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} \\ \\ \end{pmatrix}$

Exemple no 5:

emple n° 5:
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{e} \end{pmatrix}_{\mathcal{E}} \begin{bmatrix} \overrightarrow{f_2} \\ \mathbf{e} \end{bmatrix}_{\mathcal{E}}$$
 • $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{e} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$.

On se place dans la base $\mathcal E$ car elle est orthonormale : on a $:\overrightarrow{f_1}\cdot\overrightarrow{f_1}=2\times 2+(-1)\times (-1)=5$

on a
$$\overrightarrow{f_1} \cdot \overrightarrow{f_1} = 2 imes 2 + (-1) imes (-1) = 0$$

$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} & \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} \\ = {}^{t} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{(P_{\mathcal{E}}^{\mathcal{F}}) \times \max_{\mathcal{E}}(b) \times P_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{F}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} } \\ \text{Donc, } \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \\ \text{V\'erifions: } \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_{1}} \cdot \overrightarrow{f_{1}} & \overrightarrow{f_{1}} \cdot \overrightarrow{f_{2}} \\ \overrightarrow{f_{2}} \cdot \overrightarrow{f_{1}} & \overrightarrow{f_{2}} \cdot \overrightarrow{f_{2}} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 0 & 1 \end{pmatrix}$$

Exemple no 5:

emple
$$n^{o}$$
 5:
$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} [\overrightarrow{f_{1}}]_{\mathcal{E}} & [\overrightarrow{f_{2}}]_{\mathcal{E}} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

On se place dans la base ${\cal E}$ car elle est orthonormale : on a : $\overrightarrow{f_1} \cdot \overrightarrow{f_2} =$

on a :
$$\overrightarrow{f_1} \cdot \overrightarrow{f_2} =$$

$$= {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{\overset{t}{(P_{\mathcal{E}}^{\mathcal{F}})} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times P_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$$

$$\underbrace{\overset{\mathsf{mat}}{\mathsf{mpt}}(b)}_{\mathsf{mpt}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \underset{\mathcal{F}}{\mathsf{mat}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 0 & 1 \end{pmatrix}$$

 $\left[\overrightarrow{v}\right]_{\mathcal{E}}$

Exemple no 5:

emple
$$\mathbf{n}^{o}$$
 5:
$$\mathbf{p}_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{pmatrix}_{\mathcal{E}} \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathcal{E}}$$

On se place dans la base $\mathcal E$ car elle est orthonormale : on a : $\overrightarrow{f_1} \cdot \overrightarrow{f_2} = 2 \times 1 + (-1) \times 1 =$

on a :
$$\overrightarrow{f_1} \cdot \overrightarrow{f_2} = 2 \times 1 + (-1) \times 1 =$$

 \overrightarrow{u}

 $\left[\overrightarrow{v}\right]_{\mathcal{E}}$

Exemple no 5:

emple
$$\mathbf{n}^{o}$$
 5:
$$\mathbf{p}_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{pmatrix}_{\mathcal{E}} \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathcal{E}}$$

On se place dans la base $\mathcal E$ car elle est orthonormale : on a : $\overrightarrow{f_1} \cdot \overrightarrow{f_2} = 2 \times 1 + (-1) \times 1 = 1$

on a :
$$\overrightarrow{f_1} \cdot \overrightarrow{f_2} = 2 imes 1 + (-1) imes 1 = 1$$

$$\left[\overrightarrow{u}
ight]_{\mathcal{E}}$$

$$= {}^{t} \left[\overrightarrow{u}\right]_{\mathcal{F}} \underbrace{\left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}}\right) \times \max_{\mathcal{E}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}}_{\mathbf{F}} \left[\overrightarrow{v}\right]_{\mathcal{F}}$$

$$\operatorname*{mat}_{\mathcal{F}}(b)$$

$$\mathsf{Donc},\, \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} \mathbf{5} & \mathbf{1} \\ & \end{pmatrix}$$

 $\left[\overrightarrow{v}\right]_{\mathcal{E}}$

Exemple no 5:

emple n° 5:
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{e} \end{pmatrix} \begin{bmatrix} \overrightarrow{f_2} \\ \mathbf{e} \end{bmatrix} \mathbf{e}$$

$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{e} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$$

On se place dans la base ${\cal E}$ car elle est orthonormale : on a : $\overrightarrow{f_2} \cdot \overrightarrow{f_1} =$

on a:
$$\overrightarrow{f_2} \cdot \overrightarrow{f_1} =$$

$$\left[\overrightarrow{v}\right]_{\mathcal{E}}$$
 $\left[\overrightarrow{v}\right]_{\mathcal{E}}$

$$= {}^{t} \left[\overrightarrow{u} \right]_{\mathcal{F}} \underbrace{\underbrace{\left(\boldsymbol{\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}} \right) \times \max_{\mathcal{E}} (b) \times \boldsymbol{\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}}}_{\mathcal{F}} \left[\overrightarrow{v} \right]_{\mathcal{F}}}_{\text{mat}(b)}$$

$$\max_{\mathcal{F}}(b)$$

$$\mathsf{Donc},\, \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} \mathbf{5} & \mathbf{1} \\ & \end{pmatrix}$$

Exemple no 5:

emple
$$\mathbf{n}^{o}$$
 5:
$$\mathbf{p}_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{pmatrix}_{\mathcal{E}} \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathcal{E}}$$

On se place dans la base $\mathcal E$ car elle est orthonormale : on a : $\overrightarrow{f_2} \cdot \overrightarrow{f_1} = 1 \times 2 + 1 \times (-1) =$

on a:
$$\overrightarrow{f_2} \cdot \overrightarrow{f_1} = 1 \times 2 + 1 \times (-1) =$$

$$\left[\overrightarrow{u}\right]_{\mathcal{E}}$$
 $\left[\overrightarrow{v}\right]_{\mathcal{E}}$

$$= {}^{t} \left[\overrightarrow{u} \right]_{\mathcal{F}} \underbrace{\frac{\left(\boldsymbol{P}_{\mathcal{E}}^{\mathcal{F}} \right) \times \max_{\mathcal{E}} (b) \times \boldsymbol{P}_{\mathcal{E}}^{\mathcal{F}}}{\max_{\mathcal{F}} (b)}}_{\text{mat}(b)} \left[\overrightarrow{v} \right]_{\mathcal{F}}$$

$$\max_{\mathcal{F}}(b)$$

$$\mathsf{Donc},\, \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} \mathbf{5} & \mathbf{1} \\ & \end{pmatrix}$$

Exemple no 5:

emple
$$\mathbf{n}^{o}$$
 5:
$$\mathbf{p}_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{pmatrix}_{\mathcal{E}} \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}_{\mathcal{E}}$$

On se place dans la base $\mathcal E$ car elle est orthonormale : on a : $\overrightarrow{f_2} \cdot \overrightarrow{f_1} = 1 \times 2 + 1 \times (-1) = 1$

on a:
$$\overrightarrow{f_2} \cdot \overrightarrow{f_1} = 1 \times 2 + 1 \times (-1) = 1$$

$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} \qquad \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}}$$

$$= {}^{t} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{ \begin{pmatrix} \mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \end{pmatrix} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} }$$

$$\mathsf{Donc, mat}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & \end{pmatrix}$$



Exemple no 5:

On se place dans la base ${\cal E}$ car elle est orthonormale : on a : $\overrightarrow{f_2} \cdot \overrightarrow{f_2} =$

ona:
$$\overrightarrow{f_2} \cdot \overrightarrow{f_2}$$
 =

$$\left[\overrightarrow{u}\right]_{\mathcal{E}}$$
 $\left[\overrightarrow{v}\right]_{\mathcal{E}}$

$$= {}^{t} \left[\overrightarrow{u} \right]_{\mathcal{F}} \underbrace{\underbrace{\left(\boldsymbol{\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}} \right) \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \boldsymbol{\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}}}}_{\mathbf{mat}(b)} \left[\overrightarrow{v} \right]_{\mathcal{F}}$$

$$\max_{\mathcal{F}}(b)$$

$$\mathsf{Donc},\, \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & \end{pmatrix}$$

Exemple no 5:

emple n° 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$

On se place dans la base $\mathcal E$ car elle est orthonormale : on a : $\overrightarrow{f_2} \cdot \overrightarrow{f_2} = 1 \times 1 + 1 \times 1 =$

on a:
$$\overrightarrow{f_2} \cdot \overrightarrow{f_2} = 1 \times 1 + 1 \times 1 =$$

$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{E}} & \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{E}} \\ = {}^{t} \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \underbrace{\begin{pmatrix} \mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \end{pmatrix} \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}}_{\mathcal{E}}} \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} \\ \\ \underset{\mathcal{F}}{\mathsf{mat}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} \mathbf{5} & \mathbf{1} \\ \mathbf{1} & \end{pmatrix}$$

Exemple no 5:

emple n° 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$

On se place dans la base $\mathcal E$ car elle est orthonormale : on a : $\overrightarrow{f_2} \cdot \overrightarrow{f_2} = 1 \times 1 + 1 \times 1 = 2$

on a:
$$\overrightarrow{f_2} \cdot \overrightarrow{f_2} = 1 \times 1 + 1 \times 1 = 2$$

$$= {}^{t} \left[\overrightarrow{u} \right]_{\mathcal{E}} \underbrace{ \left(\mathbf{P}_{\mathcal{E}}^{\mathcal{F}} \right) \times \underset{\mathcal{E}}{\mathsf{mat}}(b) \times \mathbf{P}_{\mathcal{E}}^{\mathcal{F}}} \left[\overrightarrow{v} \right]_{\mathcal{F}} }_{\mathbf{p}}$$

$$\mathsf{Donc},\, \max_{\mathcal{F}}(b) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathsf{V\acute{e}rifions}: \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\begin{array}{ccc}
 & |f_1'|_{\mathcal{E}} & |f_2'|_{\mathcal{E}} \\
 & P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}.
\end{array}$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Exemple n° 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$.

• Vérifions: $\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$

Expression analytique du produit scalaire dans la base ${\cal F}$:

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Donc, si
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\left[\overrightarrow{v'}\right]_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} =$

Exemple nº 5

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

$$\text{Donc, si } \left[\overrightarrow{u}\right]_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \left[\overrightarrow{v}\right]_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix} \text{ alors } \overrightarrow{u} \cdot \overrightarrow{v} = {}^t \big[\overrightarrow{u}\big]_{\mathcal{F}} \times \max_{\mathcal{F}} (b) \times \big[\overrightarrow{v}\big]_{\mathcal{F}}$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} [\overrightarrow{f_1}]_{\mathcal{E}} & [\overrightarrow{f_2}]_{\mathcal{E}} \\ \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}.$$

Exemple n° 5:
$$|\overrightarrow{f_1}|_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$.

• Vérifions: $\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$

Donc, si
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \left[\overrightarrow{u}\right]_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \left[\overrightarrow{v}\right]_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} & \\ & \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} & \\ & \end{pmatrix}$$

$$= \begin{pmatrix} x & y & \\ & & \end{pmatrix} \times \begin{pmatrix} x' \\ y' & & \end{pmatrix}$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Exemple n° 5:
$$|\overrightarrow{f_1}|_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$.

• Vérifions: $\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$

Donc, si
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \left[\overrightarrow{u}\right]_{\mathcal{F}} \times \max_{\mathcal{F}} (b) \times \left[\overrightarrow{v}\right]_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} y \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} y \\ y' \end{pmatrix} = \begin{pmatrix} y & y \\ y \end{pmatrix} = \begin{pmatrix} y &$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Exemple n° 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$
• Vérifions $\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$

Donc, si
$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} \mathbf{5x'} + \mathbf{y'} \end{pmatrix}$$

$$=$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} [\overrightarrow{f_1}]_{\mathcal{E}} & [\overrightarrow{f_2}]_{\mathcal{E}} \\ \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}.$$

Exemple n° 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$
• Vérifions: $\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$

Donc, si
$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} \mathbf{5x'} + \mathbf{y'} \\ \mathbf{x'} + \mathbf{2y'} \end{pmatrix}$$

$$=$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Exemple n° 5:
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{e} \\ -\mathbf{1} \\ \mathbf{e} \end{pmatrix}$$
• Vérifions:
$$\max_{\mathcal{F}} (b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

Donc, si
$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} \mathbf{5} \mathbf{x'} + \mathbf{y'} \\ \mathbf{x'} + \mathbf{2} \mathbf{y'} \end{pmatrix}$$

$$= \mathbf{5} \mathbf{x} \mathbf{x'} + \mathbf{5} \mathbf{x$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Exemple n° 5:
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{z} \\ -\mathbf{1} \\ \mathbf{z} \end{pmatrix}$$
• Vérifions:
$$\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

Donc, si
$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} \mathbf{5}x' + \mathbf{y'} \\ \mathbf{x'} + 2\mathbf{y'} \end{pmatrix}$$

$$= \mathbf{5}xx' + xy' + \mathbf{5}x' + \mathbf{5}x$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} [\overrightarrow{f_1}]_{\mathcal{E}} & [\overrightarrow{f_2}]_{\mathcal{E}} \\ \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}.$$

Exemple n° 5:
$$P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overrightarrow{f_1} \\ \mathbf{z} \\ -\mathbf{1} \\ \mathbf{z} \end{pmatrix}$$
• Vérifions:
$$\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

Donc, si
$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} \mathbf{5}x' + \mathbf{y'} \\ \mathbf{x'} + 2\mathbf{y'} \end{pmatrix}$$

$$= \mathbf{5}xx' + xy' + yx' + \mathbf{5}x' +$$

Exemple no 5:

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \overline{f_1} \\ 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Exemple n° 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$
• $P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}$
• Vérifions $\max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$

Donc, si
$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} \mathbf{5}x' + \mathbf{y'} \\ \mathbf{x'} + 2\mathbf{y'} \end{pmatrix}$$

$$= \mathbf{5}xx' + xy' + yx' + 2yy'$$

Exemple no 5:

ole no 5:
$$[\overrightarrow{f_1}]_{\mathcal{E}} \quad [\overrightarrow{f_2}]_{\mathcal{E}}$$

$$\bullet \ P_{\mathcal{E}}^{\mathcal{F}} = \begin{pmatrix} \mathbf{2} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix}.$$

$$\bullet \ \mathsf{V\'{e}rifions} : \max_{\mathcal{F}}(b) = \begin{pmatrix} \overrightarrow{f_1} \cdot \overrightarrow{f_1} & \overrightarrow{f_1} \cdot \overrightarrow{f_2} \\ \overrightarrow{f_2} \cdot \overrightarrow{f_1} & \overrightarrow{f_2} \cdot \overrightarrow{f_2} \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}$$

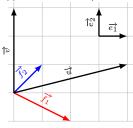
Expression analytique du produit scalaire dans la base ${\mathcal F}$:

Donc, si
$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = {}^t \begin{bmatrix} \overrightarrow{u} \end{bmatrix}_{\mathcal{F}} \times \underset{\mathcal{F}}{\mathsf{mat}}(b) \times \begin{bmatrix} \overrightarrow{v} \end{bmatrix}_{\mathcal{F}}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \times \begin{pmatrix} \mathbf{5x'} + \mathbf{y'} \\ \mathbf{x'} + \mathbf{2y'} \end{pmatrix}$$

$$= \mathbf{5xx'} + \mathbf{xy'} + \mathbf{yx'} + \mathbf{2yy'}$$

Evidemment, lorsque la base n'est pas orthonormée, on calcule le produit scalaire par la voie matricielle.

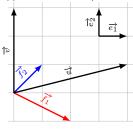


Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}}=\left(\begin{array}{c} \end{array}\right),\ \left[\overrightarrow{v}\right]_{\mathcal{E}}=\left(\begin{array}{c} \end{array}\right)$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = () () ()$$

$$= () () =$$

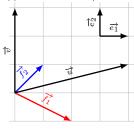


Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = () () ()$$

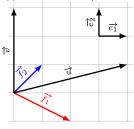
$$= () () =$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

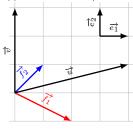
$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = () () ()$$
$$= () () =$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

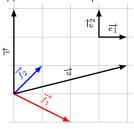
$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix}$$
$$= \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix} = \begin{pmatrix} & \\ & \end{pmatrix}$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} & & \\ & & \end{pmatrix} \begin{pmatrix} & \\ & & \end{pmatrix}$$

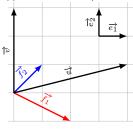


Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 &$$

$$= () () =$$

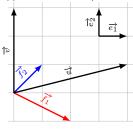


Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

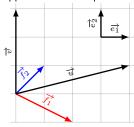
$$=\begin{pmatrix} 4 & 1 \end{pmatrix}\begin{pmatrix} 0 \\ 3 \end{pmatrix} =$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$



Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

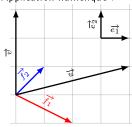
Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}
ight)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$= (4 \quad 1) \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Application numérique :



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}
ight)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

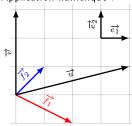
$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \left(\right)$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \left(\right)$

$$\overrightarrow{u}\cdot\overrightarrow{v}=b\big(\overrightarrow{u},\overrightarrow{v}\big)=\big(\qquad\big)\left(\qquad\Big)\left(\qquad\Big)=\big(\qquad\big)\left(\qquad\Big)$$

=



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}
ight)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

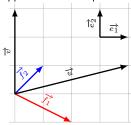
$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \begin{pmatrix} 1 \\ \end{pmatrix}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \begin{pmatrix} 1 \\ \end{pmatrix}$

$$\overrightarrow{u}\cdot\overrightarrow{v}=b(\overrightarrow{u},\overrightarrow{v})=(\qquad)\left(\qquad\right)\left(\qquad\right)=(\qquad)\left(\qquad\right)$$

Application numérique :



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

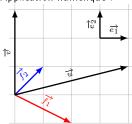
$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{1}{2}$

$$\overrightarrow{u}\cdot\overrightarrow{v}=b(\overrightarrow{u},\overrightarrow{v})=(\qquad)\left(\qquad\right)\left(\qquad\right)=(\qquad)\left(\qquad\right)$$

=



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}
ight)$$
 :

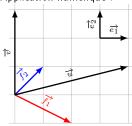
$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{-1}{2}$

$$\overrightarrow{u}\cdot\overrightarrow{v}=b(\overrightarrow{u},\overrightarrow{v})=(\qquad)\left(\qquad\right)\left(\qquad\right)=(\qquad)\left(\qquad\right)$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}
ight)$$
 :

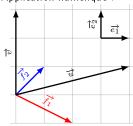
$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{-1}{2}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = () () () ()$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}
ight)$$
 :

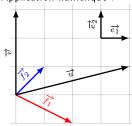
$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F}=\left(\overrightarrow{f_1},\overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \begin{pmatrix}1\\2\end{pmatrix}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \begin{pmatrix}-1\\2\end{pmatrix}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix}$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

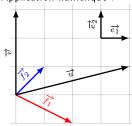
$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F}=\left(\overrightarrow{f_1},\overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{-1}{2}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} & \\ \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} & \\ \end{pmatrix}$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}
ight)$$
 :

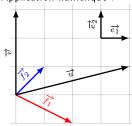
$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{-1}{2}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 1 & \mathbf{2} \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

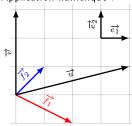
$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F}=\left(\overrightarrow{f_1},\overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{-1}{2}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 1 & \mathbf{2} \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{2} \end{pmatrix} \begin{pmatrix} -3 \\ \end{pmatrix}$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

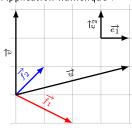
$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F}=\left(\overrightarrow{f_1},\overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{-1}{2}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 1 & \mathbf{2} \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{2} \end{pmatrix} \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$



Dans la base
$$\mathcal{E} = \left(\overrightarrow{e_1}, \overrightarrow{e_2}\right)$$
 :

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} 4\\1 \end{pmatrix}, \left[\overrightarrow{v}\right]_{\mathcal{E}} = \begin{pmatrix} 0\\3 \end{pmatrix}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 4 \times 0 + 3 \times 1 = 3$$

Dans la base
$$\mathcal{F} = \left(\overrightarrow{f_1}, \overrightarrow{f_2}\right)$$
 :

Sans matrice de passage, on voit que :
$$\left[\overrightarrow{u}\right]_{\mathcal{F}} = \binom{1}{2}$$
, $\left[\overrightarrow{v}\right]_{\mathcal{F}} = \binom{-1}{2}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$
$$= 1 \times (-3) + 2 \times 3 = 3$$

Théorème

Etant donnés un espace vectoriel E de dimension fini, muni de deux bases \mathcal{E} et \mathcal{F} , et une forme bilinéaire b:

$$\max_{\mathcal{F}}(b) = {}^{t}\!\!\left(\boldsymbol{P}_{\boldsymbol{\mathcal{E}}}^{\boldsymbol{\mathcal{F}}}\right) \, \max_{\mathcal{E}}(b) \, \boldsymbol{P}_{\boldsymbol{\mathcal{F}}}^{\boldsymbol{\mathcal{E}}}$$

Théorème

Etant donnés un espace vectoriel E de dimension fini, muni de deux bases \mathcal{E} et \mathcal{F} , et une forme bilinéaire b:

 $\max_{\mathcal{F}}(b) = {}^{t}\!\!\left(\boldsymbol{P}_{\boldsymbol{\mathcal{E}}}^{\boldsymbol{\mathcal{F}}}\right) \, \max_{\mathcal{E}}(b) \, \, \boldsymbol{P}_{\boldsymbol{\mathcal{F}}}^{\boldsymbol{\mathcal{E}}}$

Il n'est pas nécessaire d'inverser la matrice de passage.

Théorème

Etant donnés un espace vectoriel E de dimension fini, muni de deux bases \mathcal{E} et \mathcal{F} , et une forme bilinéaire b:

 $\max_{\mathcal{F}}(b) = {}^{t}\!\!\left(\boldsymbol{P}_{\boldsymbol{\mathcal{E}}}^{\boldsymbol{\mathcal{F}}}\right) \, \max_{\boldsymbol{\mathcal{E}}}(b) \, \, \boldsymbol{P}_{\boldsymbol{\mathcal{F}}}^{\boldsymbol{\mathcal{E}}}$

Il n'est pas nécessaire d'inverser la matrice de passage.

Définition:

Etant donnés un espace vectoriel E, on dit qu'une forme linéaire est symétrique si et seulement si pour tout vecteur \overrightarrow{u} et \overrightarrow{v} de l'espace vectoriel E, on a $b(\overrightarrow{u},\overrightarrow{v})=b(\overrightarrow{v},\overrightarrow{u})$

En dimension finie, cela revient à dire que la matrice de b dans n'importe qu'elle base est symétrique.

III. Produit tensoriel.

Considérons une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de \mathbb{R}^2 , et notons $\left(e^1,e^2\right)$ sa base duale :

$$\begin{cases} e^{1}(\overrightarrow{e_{1}}) = 1 \\ e^{1}(\overrightarrow{e_{2}}) = 0 \end{cases} \text{ et } \begin{cases} e^{2}(\overrightarrow{e_{1}}) = 0 \\ e^{2}(\overrightarrow{e_{2}}) = 1 \end{cases}$$

III. Produit tensoriel.

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

•
$$(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \dots$$

•
$$(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \dots$$

•
$$(e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$$

• $(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$

•
$$(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

•
$$(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$$

•
$$(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \dots$$

•
$$(e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$$

• $(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$

$$(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}$$

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{x'}$

- $(e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$ $(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{x'}$

- $(e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \dots$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}$$

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base \mathcal{E} est orthonormée, la forme bilinéaire produit scalaire s'écrit :

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base \mathcal{E} est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 +$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base \mathcal{E} est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

$$b(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} x$$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \mathbf{ax'} + \mathbf{by'} \\ \end{pmatrix} =$$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \mathbf{ax'} + \mathbf{by'} \\ \mathbf{cx'} + \mathbf{dy'} \end{pmatrix} =$$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \boldsymbol{ax'} + \boldsymbol{by'} \\ \boldsymbol{cx'} + \boldsymbol{dy'} \end{pmatrix} = \boldsymbol{axx'} + \boldsymbol{bxy'} + \boldsymbol{cyx'} + \boldsymbol{dyy'}$$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

Pour une forme bilinéaire b dont la matrice est $\max_{\mathcal{E}}(b) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a :

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \boldsymbol{ax'} + \boldsymbol{by'} \\ \boldsymbol{cx'} + \boldsymbol{dy'} \end{pmatrix} = \ \boldsymbol{axx'} + \boldsymbol{bxy'} + \boldsymbol{cyx'} + \boldsymbol{dyy'}$$

On a donc b =

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

Pour une forme bilinéaire b dont la matrice est $\max_{\mathcal{E}}(b) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a :

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \boldsymbol{ax'} + \boldsymbol{by'} \\ \boldsymbol{cx'} + \boldsymbol{dy'} \end{pmatrix} = \ \boldsymbol{axx'} + \boldsymbol{bxy'} + \boldsymbol{cyx'} + \boldsymbol{dyy'}$$

On a donc $b = a (e^1 \otimes e^1) +$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $\bullet (e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $\bullet (e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

Pour une forme bilinéaire b dont la matrice est $\max_{\mathcal{E}}(b) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a :

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \boldsymbol{ax'} + \boldsymbol{by'} \\ \boldsymbol{cx'} + \boldsymbol{dy'} \end{pmatrix} = \boldsymbol{axx'} + \boldsymbol{bxy'} + \boldsymbol{cyx'} + \boldsymbol{dyy'}$$

On a donc $b = a (e^1 \otimes e^1) + b (e^1 \otimes e^2) + b (e^1 \otimes e^2)$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $(e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

Pour une forme bilinéaire b dont la matrice est $\max_{\mathcal{E}}(b) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a :

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \boldsymbol{ax'} + \boldsymbol{by'} \\ \boldsymbol{cx'} + \boldsymbol{dy'} \end{pmatrix} = \boldsymbol{axx'} + \boldsymbol{bxy'} + \boldsymbol{cyx'} + \boldsymbol{dyy'}$$

On a donc $b = a \ (e^1 \otimes e^1) + b \ (e^1 \otimes e^2) + c \ (e^2 \otimes e^1) + c$

Considérons une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , et notons (e^1,e^2) sa base duale :

$$\begin{cases} e^1(\overrightarrow{e_1}) = 1 \\ e^1(\overrightarrow{e_2}) = 0 \end{cases} \text{ et } \begin{cases} e^2(\overrightarrow{e_1}) = 0 \\ e^2(\overrightarrow{e_2}) = 1 \end{cases}.$$

Etant donné $[\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, [\overrightarrow{v}]_{\mathcal{E}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, on a les formes bilinéaires suivantes :

- $(e^1 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{x'}$
- $(e^2 \otimes e^1)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{u} \times \mathbf{x'}$

- $(e^1 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{x} \times \mathbf{y'}$ $(e^2 \otimes e^2)(\overrightarrow{u}, \overrightarrow{v}) = \mathbf{y} \times \mathbf{y'}$

Ainsi, si la base $\mathcal E$ est orthonormée, la forme bilinéaire produit scalaire s'écrit : $e^1 \otimes e^1 + e^2 \otimes e^2$.

Pour une forme bilinéaire b dont la matrice est $\max_{\mathcal{E}}(b) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a :

$$b(\overrightarrow{u},\overrightarrow{v}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \boldsymbol{ax'} + \boldsymbol{by'} \\ \boldsymbol{cx'} + \boldsymbol{dy'} \end{pmatrix} = \boldsymbol{axx'} + \boldsymbol{bxy'} + \boldsymbol{cyx'} + \boldsymbol{dyy'}$$

On a donc $b=a\left(e^{1}\otimes e^{1}\right)+b\left(e^{1}\otimes e^{2}\right)+c\left(e^{2}\otimes e^{1}\right)+d\left(e^{2}\otimes e^{2}\right)$

$$\mathbf{d}^{2}f(x,y) = \frac{\partial^{2}f}{\partial x^{2}}(x,y)\mathbf{d}\boldsymbol{x}\otimes\mathbf{d}\boldsymbol{x} + \frac{\partial^{2}f}{\partial x\partial y}(x,y)\mathbf{d}\boldsymbol{x}\otimes\mathbf{d}\boldsymbol{y} + \frac{\partial^{2}f}{\partial y\partial x}(x,y)\mathbf{d}\boldsymbol{y}\otimes\mathbf{d}\boldsymbol{x} + \frac{\partial^{2}f}{\partial y^{2}}(x,y)\mathbf{d}\boldsymbol{y}\otimes\mathbf{d}\boldsymbol{y}$$

$$\mathbf{d^2f}(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
 Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = x^2y + y^3$

Ainsi pour
$$f(x,y)=x^2y+y^3$$
 on a : $\dfrac{\partial f}{\partial x}(x,y)$ =

$$\mathbf{d^2f}(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
 Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{2xy}$

$$\mathbf{d^2 f}(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

$$\begin{split} \mathbf{d}^2 f(x,y) &= \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{d} \boldsymbol{x} \otimes \mathbf{d} \boldsymbol{x} + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{d} \boldsymbol{x} \otimes \mathbf{d} \boldsymbol{y} + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{d} \boldsymbol{y} \otimes \mathbf{d} \boldsymbol{x} + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{d} \boldsymbol{y} \otimes \mathbf{d} \boldsymbol{y} \\ & \text{Ainsi pour } f(x,y) = x^2 y + y^3 \text{ on a } : \frac{\partial f}{\partial x}(x,y) = \mathbf{2} \boldsymbol{x} \boldsymbol{y} \text{ et } \frac{\partial f}{\partial y}(x,y) = \boldsymbol{x}^2 + \mathbf{3} \boldsymbol{y}^2 \\ & \text{et } \mathbf{d}^2 f(x,y) = \dots \, \mathbf{d} \boldsymbol{x} \otimes \mathbf{d} \boldsymbol{x} + \dots \, \mathbf{d} \boldsymbol{x} \otimes \mathbf{d} \boldsymbol{y} + \dots \, \mathbf{d} \boldsymbol{y} \otimes \mathbf{d} \boldsymbol{x} + \dots \, \mathbf{d} \boldsymbol{y} \otimes \mathbf{d} \boldsymbol{y} \end{split}$$

$$\mathbf{d^2} f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{dx} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{dx} \otimes \mathbf{dy} + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{dy} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{dy} \otimes \mathbf{dy}$$

$$\text{Ainsi pour } f(x,y) = x^2 y + y^3 \text{ on a : } \frac{\partial f}{\partial x}(x,y) = \mathbf{2xy} \text{ et } \frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$$

$$\text{et } \mathbf{d^2} f(x,y) = \mathbf{2y} \, \mathbf{dx} \otimes \mathbf{dx} + \dots \, \mathbf{dx} \otimes \mathbf{dy} + \dots \, \mathbf{dy} \otimes \mathbf{dx} + \dots \, \mathbf{dy} \otimes \mathbf{dy}$$

$$\mathbf{d^2} f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{dx} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{dx} \otimes \mathbf{dy} + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{dy} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{dy} \otimes \mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$
et $\mathbf{d^2} f(x,y) = \mathbf{2y} \, \mathbf{dx} \otimes \mathbf{dx} + \mathbf{2x} \, \mathbf{dx} \otimes \mathbf{dy} + \dots \, \mathbf{dy} \otimes \mathbf{dx} + \dots \, \mathbf{dy} \otimes \mathbf{dy}$

$$\begin{aligned} \mathbf{d}^2 f(x,y) &= \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{d} x \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{d} x \otimes \mathbf{d} y + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{d} y \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{d} y \otimes \mathbf{d} y \\ \text{Ainsi pour } f(x,y) &= x^2 y + y^3 \text{ on a} : \frac{\partial f}{\partial x}(x,y) &= \mathbf{2} x y \text{ et } \frac{\partial f}{\partial y}(x,y) &= x^2 + 3 y^2 \\ \text{et } \mathbf{d}^2 f(x,y) &= \mathbf{2} y \, \mathbf{d} x \otimes \mathbf{d} x + \mathbf{2} x \, \mathbf{d} x \otimes \mathbf{d} y + \mathbf{2} x \, \mathbf{d} y \otimes \mathbf{d} x + \dots \, \mathbf{d} y \otimes \mathbf{d} y \end{aligned}$$

$$\mathbf{d^2} f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{dx} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{dx} \otimes \mathbf{dy} + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{dy} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{dy} \otimes \mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = 2xy$ et $\frac{\partial f}{\partial y}(x,y) = x^2 + 3y^2$ et $\mathbf{d^2} f(x,y) = 2y \, \mathbf{dx} \otimes \mathbf{dx} + 2x \, \mathbf{dx} \otimes \mathbf{dy} + 2x \, \mathbf{dy} \otimes \mathbf{dx} + 6y \, \mathbf{dy} \otimes \mathbf{dy}$

$$\mathbf{d}^{2}f(x,y) = \frac{\partial^{2}f}{\partial x^{2}}(x,y)\mathbf{d}x\otimes\mathbf{d}x + \frac{\partial^{2}f}{\partial x\partial y}(x,y)\mathbf{d}x\otimes\mathbf{d}y + \frac{\partial^{2}f}{\partial y\partial x}(x,y)\mathbf{d}y\otimes\mathbf{d}x + \frac{\partial^{2}f}{\partial y^{2}}(x,y)\mathbf{d}y\otimes\mathbf{d}y$$
Ainsi pour $f(x,y) = x^{2}y + y^{3}$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2}xy$ et $\frac{\partial f}{\partial y}(x,y) = x^{2} + \mathbf{3}y^{2}$
et $\mathbf{d}^{2}f(x,y) = \mathbf{2}y\,\mathbf{d}x\otimes\mathbf{d}x + \mathbf{2}x\,\mathbf{d}x\otimes\mathbf{d}y + \mathbf{2}x\,\mathbf{d}y\otimes\mathbf{d}x + \mathbf{6}y\,\mathbf{d}y\otimes\mathbf{d}y$

$$= \mathbf{2}y\,\mathbf{e}^{1}\otimes\mathbf{e}^{1} + \mathbf{2}x\,\mathbf{e}^{1}\otimes\mathbf{e}^{2} + \mathbf{2}x\,\mathbf{e}^{2}\otimes\mathbf{e}^{1} + \mathbf{6}y\,\mathbf{e}^{2}\otimes\mathbf{e}^{2}$$

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2 f}(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{dx} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{dx} \otimes \mathbf{dy} + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{dy} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{dy} \otimes \mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

et
$$d^2 f(x,y) = \mathbf{2} y \, d\mathbf{x} \otimes d\mathbf{x} + \mathbf{2} \mathbf{x} \, d\mathbf{x} \otimes d\mathbf{y} + \mathbf{2} \mathbf{x} \, d\mathbf{y} \otimes d\mathbf{x} + \mathbf{6} y \, d\mathbf{y} \otimes d\mathbf{y}$$

 $= \mathbf{2} y \, e^1 \otimes e^1 + \mathbf{2} \mathbf{x} \, e^1 \otimes e^2 + \mathbf{2} \mathbf{x} \, e^2 \otimes e^1 + \mathbf{6} y \, e^2 \otimes e^2$

Ainsi, $\mathbf{d}^2 f(1,3) = \dots e^1 \otimes e^1 + \dots e^1 \otimes e^2 + \dots e^2 \otimes e^1 + \dots e^2 \otimes e^2$ est une forme bilinéaire,

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\begin{split} &\mathbf{d^2f}(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy} \\ &\text{Ainsi pour } f(x,y) = x^2y + y^3 \text{ on a } : \frac{\partial f}{\partial x}(x,y) = \mathbf{2xy} \text{ et } \frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + 3\mathbf{y^2} \\ &\text{et } \mathbf{d^2f}(x,y) = \mathbf{2y} \, \mathbf{dx}\otimes\mathbf{dx} + \mathbf{2x} \, \mathbf{dx}\otimes\mathbf{dy} + \mathbf{2x} \, \mathbf{dy}\otimes\mathbf{dx} + \mathbf{6y} \, \mathbf{dy}\otimes\mathbf{dy} \end{split}$$

$$= 2y e^1 \otimes e^1 + 2x e^1 \otimes e^2 + 2x e^2 \otimes e^1 + 6y e^2 \otimes e^2$$

Ainsi, $\mathbf{d^2}f(1,3) = \mathbf{6} \ e^1 \otimes e^1 + \dots e^1 \otimes e^2 + \dots e^2 \otimes e^1 + \dots e^2 \otimes e^2$ est une forme bilinéaire,

Exemple n° 6: Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d}^2 f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{d} x \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{d} x \otimes \mathbf{d} y + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{d} y \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{d} y \otimes \mathbf{d} y$$
Ainsi pour $f(x,y) = x^2 y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2} x y$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x}^2 + \mathbf{3} y^2$

et
$$d^2 f(x,y) = \mathbf{2} y \, dx \otimes dx + \mathbf{2} x \, dx \otimes dy + \mathbf{2} x \, dy \otimes dx + \mathbf{6} y \, dy \otimes dy$$

= $\mathbf{2} y \, e^1 \otimes e^1 + \mathbf{2} x \, e^1 \otimes e^2 + \mathbf{2} x \, e^2 \otimes e^1 + \mathbf{6} y \, e^2 \otimes e^2$

Ainsi, $\mathbf{d^2}f(1,3) = \mathbf{6}\,e^1\otimes e^1 + \mathbf{2}\,e^1\otimes e^2 + \dots \,e^2\otimes e^1 + \dots \,e^2\otimes e^2$ est une forme bilinéaire,

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d}^2 f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{d} x \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{d} x \otimes \mathbf{d} y + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{d} y \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{d} y \otimes \mathbf{d} y$$
Ainsi pour $f(x,y) = x^2 y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = 2xy$ et $\frac{\partial f}{\partial y}(x,y) = x^2 + 3y^2$ et $\mathbf{d}^2 f(x,y) = 2y \, \mathbf{d} x \otimes \mathbf{d} x + 2x \, \mathbf{d} x \otimes \mathbf{d} y + 2x \, \mathbf{d} y \otimes \mathbf{d} x + 6y \, \mathbf{d} y \otimes \mathbf{d} y$

$$= 2y e^1 \otimes e^1 + 2x e^1 \otimes e^2 + 2x e^2 \otimes e^1 + 6y e^2 \otimes e^2$$

Ainsi, $\mathbf{d^2}f(1,3) = \mathbf{6}\,e^1\otimes e^1 + \mathbf{2}\,e^1\otimes e^2 + \mathbf{2}\,e^2\otimes e^1 + \dots \,e^2\otimes e^2$ est une forme bilinéaire,

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d}^2 f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{d} x \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{d} x \otimes \mathbf{d} y + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{d} y \otimes \mathbf{d} x + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{d} y \otimes \mathbf{d} y$$
Ainsi pour $f(x,y) = x^2 y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = 2xy$ et $\frac{\partial f}{\partial y}(x,y) = x^2 + 3y^2$ et $\mathbf{d}^2 f(x,y) = 2y \, \mathbf{d} x \otimes \mathbf{d} x + 2x \, \mathbf{d} x \otimes \mathbf{d} y + 2x \, \mathbf{d} y \otimes \mathbf{d} x + 6y \, \mathbf{d} y \otimes \mathbf{d} y$

$$= 2y e^{1} \otimes e^{1} + 2x e^{1} \otimes e^{2} + 2x e^{2} \otimes e^{1} + 6y e^{2} \otimes e^{2}$$

Ainsi, $\mathbf{d}^2 f(1,3) = \mathbf{6} e^1 \otimes e^1 + \mathbf{2} e^1 \otimes e^2 + \mathbf{2} e^2 \otimes e^1 + \mathbf{18} e^2 \otimes e^2$ est une forme bilinéaire,

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2}f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

et
$$d^2 f(x,y) = 2y dx \otimes dx + 2x dx \otimes dy + 2x dy \otimes dx + 6y dy \otimes dy$$

$$= 2y e^{1} \otimes e^{1} + 2x e^{1} \otimes e^{2} + 2x e^{2} \otimes e^{1} + 6y e^{2} \otimes e^{2}$$

Ainsi, $\mathbf{d}^2 f(1,3) = \mathbf{6} \, e^1 \otimes e^1 + \mathbf{2} \, e^1 \otimes e^2 + \mathbf{2} \, e^2 \otimes e^1 + \mathbf{18} \, e^2 \otimes e^2$ est une forme bilinéaire,

et
$$d^2f(1,3)\begin{bmatrix} \binom{h}{k}, \binom{h}{k} \end{bmatrix} = 6 \dots + 2 \dots + 2 \dots + 18 \dots$$

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2}f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

et
$$d^2 f(x,y) = 2y dx \otimes dx + 2x dx \otimes dy + 2x dy \otimes dx + 6y dy \otimes dy$$

$$= 2y e^1 \otimes e^1 + 2x e^1 \otimes e^2 + 2x e^2 \otimes e^1 + 6y e^2 \otimes e^2$$

Ainsi, $\mathbf{d}^2 f(1,3) = \mathbf{6} \, e^1 \otimes e^1 + \mathbf{2} \, e^1 \otimes e^2 + \mathbf{2} \, e^2 \otimes e^1 + \mathbf{18} \, e^2 \otimes e^2$ est une forme bilinéaire,

et
$$d^2f(1,3)$$
 $\begin{bmatrix} \binom{h}{k}, \binom{h}{k} \end{bmatrix} = 6h^2 + 2 \dots + 2 \dots + 18 \dots$

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2}f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

et
$$d^2 f(x,y) = 2y dx \otimes dx + 2x dx \otimes dy + 2x dy \otimes dx + 6y dy \otimes dy$$

$$= 2y e^{1} \otimes e^{1} + 2x e^{1} \otimes e^{2} + 2x e^{2} \otimes e^{1} + 6y e^{2} \otimes e^{2}$$

Ainsi, $\mathbf{d^2}f(1,3)=\mathbf{6}\,e^1\otimes e^1+\mathbf{2}\,e^1\otimes e^2+\mathbf{2}\,e^2\otimes e^1+\mathbf{18}\,e^2\otimes e^2$ est une forme bilinéaire,

et
$$d^2 f(1,3) \left[\binom{h}{k}, \binom{h}{k} \right] = 6 h^2 + 2 hk + 2 \dots + 18 \dots$$

Exemple nº 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2}f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

Ainsi pour
$$f(x,y) = x^2y + y^3$$
 on a : $\frac{1}{\partial x}(x,y) = 2xy$ et $\frac{1}{\partial y}(x,y) = x^2 + 3y^2$ et $\frac{1}{\partial y}(x,y) = 2y \, dx \otimes dx + 2x \, dx \otimes dy + 2x \, dy \otimes dx + 6y \, dy \otimes dy$

$$= 2y e^1 \otimes e^1 + 2x e^1 \otimes e^2 + 2x e^2 \otimes e^1 + 6y e^2 \otimes e^2$$

Ainsi, $d^2f(1,3) = 6e^1 \otimes e^1 + 2e^1 \otimes e^2 + 2e^2 \otimes e^1 + 18e^2 \otimes e^2$ est une forme bilinéaire,

et
$$d^2 f(1,3) \left[\binom{h}{k}, \binom{h}{k} \right] = 6 h^2 + 2 hk + 2 kh + 18 \dots$$

Exemple nº 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2} f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{dx} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{dx} \otimes \mathbf{dy} + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{dy} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{dy} \otimes \mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = 2xy$ et $\frac{\partial f}{\partial y}(x,y) = x^2 + 3y^2$

Ainsi pour
$$f(x,y)=x^2y+y^3$$
 on a : $\frac{\partial f}{\partial x}(x,y)=\mathbf{2}xy$ et $\frac{\partial f}{\partial y}(x,y)=\mathbf{x^2}+\mathbf{3}y^2$

et
$$d^2 f(x,y) = \mathbf{2} y \, d\mathbf{x} \otimes d\mathbf{x} + \mathbf{2} \mathbf{x} \, d\mathbf{x} \otimes d\mathbf{y} + \mathbf{2} \mathbf{x} \, d\mathbf{y} \otimes d\mathbf{x} + \mathbf{6} y \, d\mathbf{y} \otimes d\mathbf{y}$$

 $= \mathbf{2} y \, e^1 \otimes e^1 + \mathbf{2} \mathbf{x} \, e^1 \otimes e^2 + \mathbf{2} \mathbf{x} \, e^2 \otimes e^1 + \mathbf{6} y \, e^2 \otimes e^2$

Ainsi, $d^2f(1,3) = 6e^1 \otimes e^1 + 2e^1 \otimes e^2 + 2e^2 \otimes e^1 + 18e^2 \otimes e^2$ est une forme bilinéaire,

et
$$d^2 f(1,3) \left[\binom{h}{k}, \binom{h}{k} \right] = 6 h^2 + 2 hk + 2 kh + 18 k^2$$

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2}f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

et
$$d^2 f(x,y) = \mathbf{2} y \, dx \otimes dx + \mathbf{2} x \, dx \otimes dy + \mathbf{2} x \, dy \otimes dx + \mathbf{6} y \, dy \otimes dy$$
$$= \mathbf{2} y \, e^1 \otimes e^1 + \mathbf{2} x \, e^1 \otimes e^2 + \mathbf{2} x \, e^2 \otimes e^1 + \mathbf{6} y \, e^2 \otimes e^2$$

Ainsi, $\mathbf{d}^2 f(1,3) = \mathbf{6} \, e^1 \otimes e^1 + \mathbf{2} \, e^1 \otimes e^2 + \mathbf{2} \, e^2 \otimes e^1 + \mathbf{18} \, e^2 \otimes e^2$ est une forme bilinéaire,

et
$$d^2f(1,3)$$
 $\left[\binom{h}{k},\binom{h}{k}\right] = 6h^2 + 2hk + 2kh + 18k^2$
= $6h^2 + \dots hk + 18k^2$

Exemple n° 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2}f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y)\mathbf{dx}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial x\partial y}(x,y)\mathbf{dx}\otimes\mathbf{dy} + \frac{\partial^2 f}{\partial y\partial x}(x,y)\mathbf{dy}\otimes\mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y)\mathbf{dy}\otimes\mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = \mathbf{2xy}$ et $\frac{\partial f}{\partial y}(x,y) = \mathbf{x^2} + \mathbf{3y^2}$

et
$$d^2 f(x,y) = \mathbf{2} y \, dx \otimes dx + \mathbf{2} x \, dx \otimes dy + \mathbf{2} x \, dy \otimes dx + \mathbf{6} y \, dy \otimes dy$$
$$= \mathbf{2} y \, e^1 \otimes e^1 + \mathbf{2} x \, e^1 \otimes e^2 + \mathbf{2} x \, e^2 \otimes e^1 + \mathbf{6} y \, e^2 \otimes e^2$$

Ainsi,
$$\mathbf{d}^2 f(1,3) = \mathbf{6} e^1 \otimes e^1 + \mathbf{2} e^1 \otimes e^2 + \mathbf{2} e^2 \otimes e^1 + \mathbf{18} e^2 \otimes e^2$$
 est une forme bilinéaire,

et
$$d^2f(1,3)$$
 $\left[\binom{h}{k},\binom{h}{k}\right] = 6h^2 + 2hk + 2kh + 18k^2$
= $6h^2 + 4hk + 18k^2$

Exemple nº 6 : Les différentielles d'ordre 2 sont des applications qui à chaque point de l'espace associe une forme bilinéaire :

$$\mathbf{d^2} f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) \mathbf{dx} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial x \partial y}(x,y) \mathbf{dx} \otimes \mathbf{dy} + \frac{\partial^2 f}{\partial y \partial x}(x,y) \mathbf{dy} \otimes \mathbf{dx} + \frac{\partial^2 f}{\partial y^2}(x,y) \mathbf{dy} \otimes \mathbf{dy}$$
Ainsi pour $f(x,y) = x^2y + y^3$ on a : $\frac{\partial f}{\partial x}(x,y) = 2xy$ et $\frac{\partial f}{\partial y}(x,y) = x^2 + 3y^2$

Ainsi pour
$$f(x,y)=x^2y+y^3$$
 on a : $\frac{-y}{\partial x}(x,y)=\mathbf{2xy}$ et $\frac{-y}{\partial y}(x,y)=\mathbf{x^2+3y^2}$

et
$$\mathrm{d}^2 f(x,y) = \mathbf{2} y \, \mathrm{d} x \otimes \mathrm{d} x + \mathbf{2} x \, \mathrm{d} x \otimes \mathrm{d} y + \mathbf{2} x \, \mathrm{d} y \otimes \mathrm{d} x + \mathbf{6} y \, \mathrm{d} y \otimes \mathrm{d} y$$

$$= \mathbf{2} y \, e^1 \otimes e^1 + \mathbf{2} x \, e^1 \otimes e^2 + \mathbf{2} x \, e^2 \otimes e^1 + \mathbf{6} y \, e^2 \otimes e^2$$

Ainsi, $d^2f(1,3) = 6e^1 \otimes e^1 + 2e^1 \otimes e^2 + 2e^2 \otimes e^1 + 18e^2 \otimes e^2$ est une forme bilinéaire.

et
$$\mathbf{d}^2 f(1,3) \left[\begin{pmatrix} h \\ k \end{pmatrix}, \begin{pmatrix} h \\ k \end{pmatrix} \right] = 6 h^2 + 2 hk + 2 kh + 18 k^2$$

= $6h^2 + 4hk + 18k^2$ qui est une forme quadratique.

Dans une base $\mathcal{E}=\left(\overrightarrow{e_1},\overrightarrow{e_2}\right)$ de \mathbb{R}^2 , la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ d'un endomorphisme s'écrit :

$$a\left(\overrightarrow{e_1}\otimes e^1\right) + b\left(\overrightarrow{e_1}\otimes e^2\right) + c\left(\overrightarrow{e_2}\otimes e^1\right) + d\left(\overrightarrow{e_2}\otimes e^2\right)$$

Dans une base $\mathcal{E}=(\overrightarrow{e_1},\overrightarrow{e_2})$ de \mathbb{R}^2 , la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ d'un endomorphisme s'écrit :

$$a\left(\overrightarrow{e_1}\otimes e^1\right) + b\left(\overrightarrow{e_1}\otimes e^2\right) + c\left(\overrightarrow{e_2}\otimes e^1\right) + d\left(\overrightarrow{e_2}\otimes e^2\right)$$

Dans \mathbb{R}^2 , les endomorphismes sont des tenseurs de type (1,1), et les formes bilinéaires sont des tenseurs de type (0,2).

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Polynôme	Forme quadratique
$P(x) = x^2$	
$P(x) = x^2 - 3x$	
$P(x,y) = 3x^2 - 7y^2 + 5xy$	
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	
$P(x, y, z) = x^2 - y^2 + 5x - yz$	

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	
$P(x,y) = 3x^2 - 7y^2 + 5xy$	
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	
$P(x, y, z) = x^2 - y^2 + 5x - yz$	

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	
$P(x, y, z) = x^2 - y^2 + 5x - yz$	

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	
$P(x, y, z) = x^2 - y^2 + 5x - yz$	

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	
$P(x, y, z) = x^2 - y^2 + 5x - yz$	

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	

Définition:

Une forme **quadratique** est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Autrement dit, une forme quadratique est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total égal à 2.

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	Non

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	Non

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	Non

La forme générale d'une forme quadratique :

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	Non

La forme générale d'une forme quadratique :

ullet à une indéterminée s'écrit : P(x)=

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	Non

La forme générale d'une forme quadratique :

- à une indéterminée s'écrit : $P(x) = ax^2$
- à deux indéterminées s'écrit :

$$Q(x,y) =$$

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	Non

La forme générale d'une forme quadratique :

- à une indéterminée s'écrit : $P(x) = ax^2$
- à deux indéterminées s'écrit :

$$Q(x,y) = \mathbf{ax^2} + \mathbf{by^2} + \mathbf{cxy}$$

• à trois indéterminées s'écrit

$$R(x, y, z) =$$

Polynôme	Forme quadratique
$P(x) = x^2$	Oui
$P(x) = x^2 - 3x$	Non
$P(x,y) = 3x^2 - 7y^2 + 5xy$	Oui
$P(x,y) = 3x^2 - 7y^2 + 5xy - 8$	Non
$P(x, y, z) = x^2 - y^2 + 5xy - yz$	Oui
$P(x, y, z) = x^2 - y^2 + 5x - yz$	Non

La forme générale d'une forme quadratique :

- à une indéterminée s'écrit : $P(x) = ax^2$
- à deux indéterminées s'écrit :

$$Q(x,y) = ax^2 + by^2 + cxy$$

• à trois indéterminées s'écrit

$$R(x, y, z) = ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz$$

1. Forme quadratique associée à une forme bilinéaire.

1. Forme quadratique associée à une forme bilinéaire.

Théorème

Etant donné une forme bilinéaire b définie sur un espace vectoriel E de dimension finie muni d'une base \mathcal{E} , la forme $q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u})$ est une forme quadratique sur E.

 $oldsymbol{q}$ est appelée la $oldsymbol{forme}$ quadratique associée à la forme bilinéaire $oldsymbol{b}$.

1. Forme quadratique associée à une forme bilinéaire.

Théorème

Etant donné une forme bilinéaire b définie sur un espace vectoriel E de dimension finie muni d'une base \mathcal{E} , la forme $q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u})$ est une forme quadratique sur E.

 $oldsymbol{q}$ est appelée la forme quadratique associée à la forme bilinéaire $oldsymbol{b}$.

$$\bullet \ E = \mathbb{R}^2, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

1. Forme quadratique associée à une forme bilinéaire.

Théorème

Etant donné une forme bilinéaire b définie sur un espace vectoriel E de dimension finie muni d'une base \mathcal{E} , la forme $q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u})$ est une forme quadratique sur E.

 $oldsymbol{q}$ est appelée la $oldsymbol{forme}$ quadratique associée à la forme bilinéaire $oldsymbol{b}$.

$$\bullet \ E = \mathbb{R}^2, \ \big[\overrightarrow{u}\big]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

1. Forme quadratique associée à une forme bilinéaire.

Théorème

Etant donné une forme bilinéaire b définie sur un espace vectoriel E de dimension finie muni d'une base \mathcal{E} , la forme $q(\overrightarrow{u}) = b(\overrightarrow{u},\overrightarrow{u})$ est une forme quadratique sur E.

 $oldsymbol{q}$ est appelée la $oldsymbol{forme}$ quadratique associée à la forme bilinéaire $oldsymbol{b}$.

$$\bullet \ E = \mathbb{R}^2, \ \big[\overrightarrow{u}\big]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ y \end{pmatrix}$$

1. Forme quadratique associée à une forme bilinéaire.

Théorème

Etant donné une forme bilinéaire b définie sur un espace vectoriel E de dimension finie muni d'une base \mathcal{E} , la forme $q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u})$ est une forme quadratique sur E.

 $oldsymbol{q}$ est appelée la $oldsymbol{forme}$ quadratique associée à la forme bilinéaire $oldsymbol{b}$.

$$\bullet \ E = \mathbb{R}^2, \ \big[\overrightarrow{u}\big]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$

1. Forme quadratique associée à une forme bilinéaire.

Théorème

Etant donné une forme bilinéaire b définie sur un espace vectoriel E de dimension finie muni d'une base \mathcal{E} , la forme $q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u})$ est une forme quadratique sur E.

 $oldsymbol{q}$ est appelée la $oldsymbol{forme}$ quadratique associée à la forme bilinéaire $oldsymbol{b}$.

$$\bullet \ E = \mathbb{R}^2, \ \big[\overrightarrow{u}\big]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$

$$= -2x^2 + 5xy + 3yx + 4y^2 =$$

1. Forme quadratique associée à une forme bilinéaire.

Théorème

Etant donné une forme bilinéaire b définie sur un espace vectoriel E de dimension finie muni d'une base \mathcal{E} , la forme $q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u})$ est une forme quadratique sur E.

 $oldsymbol{q}$ est appelée la $oldsymbol{\mathsf{forme}}$ $oldsymbol{\mathsf{quadratique}}$ $oldsymbol{\mathsf{associ\acute{e}e}}$ à la forme bilinéaire $oldsymbol{b}$.

$$\bullet \ E = \mathbb{R}^2, \ \big[\overrightarrow{u}\big]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$

$$= -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2$$

$$\bullet \ E = \mathbb{R}^2, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y) \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x \quad y) \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$
$$= -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2$$

$$\mathbf{\Theta} \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et } \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$\mathbf{\Phi} \ E = \mathbb{R}^2, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \underset{\mathcal{E}}{\text{mat}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$

$$= -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2$$

$$\textbf{@} \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\mathbf{0} \ E = \mathbb{R}^2, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y) \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x \quad y) \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$

$$= -2x^{2} + 5xy + 3yx + 4y^{2} = -2x^{2} + 8xy + 4y^{2}$$

$$\mathbf{\Theta} \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$=\begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} & & & \\ & & & \end{pmatrix}$$

$$\mathbf{0} \quad E = \mathbb{R}^2, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \underset{\mathcal{E}}{\mathsf{mat}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$

$$= -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2$$

$$\textbf{@} \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} x + 2y + 3z \\ y - 2 & -6 \end{pmatrix}$$

$$\begin{aligned} \bullet & E = \mathbb{R}^2, \ [\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \underset{\mathcal{E}}{\text{mat}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}. \\ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix} \\ & = -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2 \end{aligned}$$

$$\mathbf{\Theta} \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et } \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \end{pmatrix}$$

$$\mathbf{0} \quad E = \mathbb{R}^2, \ [\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \underset{\mathcal{E}}{\text{mat}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$

$$= -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2$$

$$\bullet \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$\begin{aligned} \bullet & E = \mathbb{R}^2, \ [\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \underset{\mathcal{E}}{\text{mat}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}. \\ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix} \\ & = -2x^2 + 5xy + 3yx + 4y^2 = \begin{vmatrix} -2 & x^2 + 8 & xy + 4 & y^2 \end{vmatrix}$$

$$\mathbf{\Theta} \ E = \mathbb{R}^3, \ \left[\overrightarrow{\mathcal{U}}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et } \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4z - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy +$$

$$\begin{aligned} \bullet & E = \mathbb{R}^2, \ [\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \underset{\mathcal{E}}{\text{mat}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}. \\ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix} \\ & = -2x^2 + 5xy + 3yx + 4y^2 = \begin{vmatrix} -2 & x^2 + 8 & xy + 4 & y^2 \end{vmatrix}$$

$$\bullet \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} x+2y+3z \\ -x+5y+7z \\ 4z & 2y-6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz +$$



$$\begin{aligned} \bullet & E = \mathbb{R}^2, \ [\overrightarrow{u}]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \underset{\mathcal{E}}{\text{mat}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}. \\ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix} \\ & = -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2 \end{aligned}$$

$$\textbf{@} \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$=x^2+2xy+3xz-yx+5y^2+7yz+4zx-2zy-6z^2$$

$$\bullet \ E = \mathbb{R}^2, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2x + 5y \\ 3x + 4y \end{pmatrix}$$
$$= -2x^2 + 5xy + 3yx + 4y^2 = -2x^2 + 8xy + 4y^2$$

$$\textbf{@} \ E = \mathbb{R}^3, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix}.$$

$$q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$\bullet \ E = \mathbb{R}^4, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{matrix} a \\ b \\ c \\ d \\ \end{pmatrix} \begin{matrix} 2 & 0 & 3 & 7 \\ 1 & 3 & 1 & 4 \\ -1 & 4 & 0 & 6 \\ -1 & 3 & 2 & 5 \\ \end{pmatrix}.$$

$$q(a, b, c, d) = a^2 + b^2 + d^2 + ab + ac + ad + bc + bd + cd$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$q(a,b,c,d) = 2 a^2 + 3 b^2 + 5 d^2 + ab + ac + ad + bc + bd + cd$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$q(a,b,c,d) = 2 a^2 + 3 b^2 + 5 d^2 + 1 ab + ac + ad + bc + bd + cd$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$\bullet \ E = \mathbb{R}^4, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{matrix} a \\ b \\ c \\ d \\ \end{pmatrix} \begin{matrix} 2 & 0 & 3 & 7 \\ 1 & 3 & 1 & 4 \\ -1 & 4 & 0 & 6 \\ -1 & 3 & 2 & 5 \\ \end{matrix} \right).$$

$$q(a,b,c,d) = 2 a^2 + 3 b^2 + 5 d^2 + 1 ab + 2 ac + ad + bc + bd + cd$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$\mathbf{@} \ E = \mathbb{R}^4, \ \left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}, \ \text{et} \ \max_{\mathcal{E}}(b) = \begin{matrix} a \\ b \\ c \\ d \end{matrix} \begin{vmatrix} 2 & \mathbf{0} & \mathbf{3} & \mathbf{7} \\ 1 & \mathbf{3} & 1 & 4 \\ -1 & 4 & \mathbf{0} & 6 \\ -1 & 3 & 2 & \mathbf{5} \\ \end{pmatrix}.$$

$$q(a,b,c,d) = 2 a^2 + 3 b^2 + 5 d^2 + 1 ab + 2 ac + 6 ad + bc + bd + cd$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$q(a,b,c,d) = 2 a^2 + 3 b^2 + 5 d^2 + 1 ab + 2 ac + 6 ad + 5 bc + bd + cd$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$q(a,b,c,d) = 2 a^2 + 3 b^2 + 5 d^2 + 1 ab + 2 ac + 6 ad + 5 bc + 7 bd + cd$$

$$\mathbf{Q} \ \ q(\overrightarrow{u}) = b(\overrightarrow{u}, \overrightarrow{u}) = (x \quad y \quad z) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 7 \\ 4 & -2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (x \quad y \quad z) \begin{pmatrix} x + 2y + 3z \\ -x + 5y + 7z \\ 4x - 2y - 6z \end{pmatrix}$$

$$= x^2 + 2xy + 3xz - yx + 5y^2 + 7yz + 4zx - 2zy - 6z^2$$

$$= 1 x^2 + 5 y^2 - 6 z^2 + 1 xy + 7 xz + 5 yz$$

$$q(a,b,c,d) = 2a^2 + 3b^2 + 5d^2 + 1ab + 2ac + 6ad + 5bc + 7bd + 8cd$$

Dans l'espace vectoriel $E=\mathbb{R}^n$ muni d'une base \mathcal{E} , on considère le vecteur \overrightarrow{u} défini par

$$\begin{bmatrix}\overrightarrow{u}\end{bmatrix}_{\mathcal{E}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \text{ et la forme quadratique } q \text{ définie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la forme hilloépies dent la matrix set.}$$

forme bilinéaire dont la matrice est :

Dans l'espace vectoriel $E=\mathbb{R}^n$ muni d'une base \mathcal{E} , on considère le vecteur \overrightarrow{u} défini par

$$\left[\overrightarrow{u}\right]_{\mathcal{E}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{, et la forme quadratique } q \text{ définie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ definie par } q(\overrightarrow{u}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \text{ est associée à la } q \text{ est associée } q \text{ est$$

forme bilinéaire dont la matrice est :

$$\max_{\mathcal{E}}(b) = \begin{pmatrix} \mathbf{a}_{11} & \frac{1}{2}a_{12} & \frac{1}{2}a_{13} & \dots & \frac{1}{2}a_{1n} \\ \frac{1}{2}a_{21} & \mathbf{a}_{22} & \frac{1}{2}a_{23} & \dots & \frac{1}{2}a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots &$$

Dans l'espace vectoriel $E=\mathbb{R}^n$ muni d'une base \mathcal{E} , on considère le vecteur \overrightarrow{u} défini par

forme bilinéaire dont la matrice est :

Définition:

Cette forme bilinéaire est appelée la forme polaire associée à q.

Exemple nº 9 : Dans $E=\mathbb{R}^2$ muni d'une base \mathcal{E} , on considère la forme quadratique

$$q(x,y) = x^2 + 8xy - 3y^2.$$

Exemple nº 9 : Dans $E=\mathbb{R}^2$ muni d'une base \mathcal{E} , on considère la forme quadratique

$$q(x,y) = x^2 + 8xy - 3y^2.$$

Sa forme polaire est la forme bilinéaire symétrique définie par $\max_{\mathcal{E}}(b) = \left(\begin{array}{c} \\ \end{array} \right)$

La forme polaire est une forme bilinéaire symétrique.

Exemple nº 9 : Dans $E=\mathbb{R}^2$ muni d'une base \mathcal{E} , on considère la forme quadratique

$$q(x,y) = x^2 + 8xy - 3y^2.$$

Sa forme polaire est la forme bilinéaire symétrique définie par $\max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & \\ -3 \end{pmatrix}$

La forme polaire est une forme bilinéaire symétrique.

Exemple nº 9 : Dans $E=\mathbb{R}^2$ muni d'une base \mathcal{E} , on considère la forme quadratique

$$q(x,y) = x^2 + 8xy - 3y^2.$$

Sa forme polaire est la forme bilinéaire symétrique définie par $\max_{\mathcal{E}}(b) = \begin{pmatrix} 1 & 4 \\ 4 & -3 \end{pmatrix}$

La forme polaire est une forme bilinéaire symétrique.

Exemple no 10:

ullet La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc ullet

Exemple no 10:

 La matrice associée à la forme quadratique $q(x,y) = -3x^2 + y^2 + 4xy$ est donc $\begin{pmatrix} -3 & 1 \\ & 1 \end{pmatrix}$

Exemple no 10:

ullet La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $egin{pmatrix} -3 & 2 \ 2 & 1 \end{pmatrix}$

- La matrice associée à la forme quadratique $q(x,y) = -3x^2 + y^2 + 4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique Q(x,y,z)=4xy est

- La matrice associée à la forme quadratique $q(x,y) = -3x^2 + y^2 + 4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique Q(x,y,z)=4xy est

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique Q(x,y,z)=4xy-2xz

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique Q(x,y,z)=4xy-2xz est

$$\begin{pmatrix} & 2 & -1 \\ 2 & & \\ -1 & & \end{pmatrix}$$

- La matrice associée à la forme quadratique $q(x,y) = -3x^2 + y^2 + 4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+$

$$\begin{pmatrix} & \mathbf{2} & -\mathbf{1} \\ \mathbf{2} & & \\ -\mathbf{1} & & \end{pmatrix}$$

- La matrice associée à la forme quadratique $q(x,y) = -3x^2 + y^2 + 4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+$ est

$$\begin{pmatrix} 2 & -1 \\ 2 & -3 \\ -1 & \end{pmatrix}$$

- La matrice associée à la forme quadratique $q(x,y) = -3x^2 + y^2 + 4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+$

$$\begin{pmatrix} 2 & -1 \\ 2 & -3 \\ -1 & \end{pmatrix}$$

- La matrice associée à la forme quadratique $q(x,y) = -3x^2 + y^2 + 4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+$

$$\begin{pmatrix} 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & \end{pmatrix}$$

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & \end{pmatrix}$$

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

Exemple no 10:

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

• La forme quadratique associée à la matrice $\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix} \text{ est } :$

$$Q(a, b, c, d) =$$

Exemple no 10:

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

• La forme quadratique associée à la matrice $\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix} \text{ est } :$

$$Q(a,b,c,d) = 7a^2$$

Exemple no 10:

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

• La forme quadratique associée à la matrice $\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix} \text{ est } :$

$$Q(a,b,c,d) = \mathbf{7a^2 + 3b^2}$$

Exemple no 10:

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- La matrice associée à la forme quadratique $Q(x,y,z) = 4xy 2xz 3y^2 + 16yz + 4z^2$ est

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

• La forme quadratique associée à la matrice $\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & ...5 \end{pmatrix} \text{ est } :$

$$\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix}$$
 est

$$Q(a, b, c, d) = 7a^2 + 3b^2 + 2c^2$$

Exemple no 10:

- La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $\begin{pmatrix} -3 & 2 \\ 2 & 1 \end{pmatrix}$
- ullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

• La forme quadratique associée à la matrice $\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix} \text{ est } :$

$$Q(a, b, c, d) = 7a^2 + 3b^2 + 2c^2 - 5d^2$$

Exemple no 10:

- ullet La matrice associée à la forme quadratique $q(x,y)=-3x^2+y^2+4xy$ est donc $egin{pmatrix} -3 & 2 \ 2 & 1 \end{pmatrix}$
- \bullet La matrice associée à la forme quadratique $Q(x,y,z)=4xy-2xz-3y^2+16yz+4z^2$ est

$$\begin{pmatrix} 0 & 2 & -1 \\ 2 & -3 & 8 \\ -1 & 8 & 4 \end{pmatrix}$$

• La forme quadratique associée à la matrice $\begin{pmatrix} 7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -5 \end{pmatrix} \text{ est } :$

$$Q(a, b, c, d) = 7a^2 + 3b^2 + 2c^2 - 5d^2$$

Etant donnée une forme quadratique q sur un espace vectoriel E. La forme polaire associée à q est la forme bilinéaire b définie par la relation de polarisation

$$b(\overrightarrow{u}, \overrightarrow{v}) = \frac{1}{2} \left[q(\overrightarrow{u} + \overrightarrow{v}) - q(\overrightarrow{u}) - q(\overrightarrow{v}) \right].$$

2. Décomposition de Gauss

L'algèbre linéaire nous apprend alors qu'une matrice symétrique est diagonalisable, et que ses valeurs propres sont réelles.

2. Décomposition de Gauss

L'algèbre linéaire nous apprend alors qu'une matrice symétrique est diagonalisable, et que ses valeurs propres sont réelles.

Définition:

Etant donnée, une forme quadratique Q et sa matrice associée M. On appelle **signature** de la forme quadratique Q le couple $(\boldsymbol{p},\boldsymbol{s})$ où p est le nombre de valeurs propres strictement positives de M et s de valeurs propres strictement négatives.

2. Décomposition de Gauss

L'algèbre linéaire nous apprend alors qu'une matrice symétrique est diagonalisable, et que ses valeurs propres sont réelles.

Définition:

Etant donnée, une forme quadratique Q et sa matrice associée M. On appelle **signature** de la forme quadratique Q le couple $(\boldsymbol{p},\boldsymbol{s})$ où p est le nombre de valeurs propres strictement positives de M et s de valeurs propres strictement négatives.

La décomposition de Gauss permet de trouver une décomposition d'une forme quadratique Q en combinaison linéaire de carrés de formes linéaires indépendantes f_i :

$$Q(x_1, \dots, x_n) = \sum_{i=1}^{p+s} \lambda_i f_i(x_1, \dots, x_n)^2$$

2. Décomposition de Gauss

L'algèbre linéaire nous apprend alors qu'une matrice symétrique est diagonalisable, et que ses valeurs propres sont réelles.

Définition:

Etant donnée, une forme quadratique Q et sa matrice associée M. On appelle **signature** de la forme quadratique Q le couple $(\boldsymbol{p},\boldsymbol{s})$ où p est le nombre de valeurs propres strictement positives de M et s de valeurs propres strictement négatives.

La décomposition de Gauss permet de trouver une décomposition d'une forme quadratique Q en combinaison linéaire de carrés de formes linéaires indépendantes f_i :

$$Q(x_1, \dots, x_n) = \sum_{i=1}^{p+s} \lambda_i f_i(x_1, \dots, x_n)^2$$

où (p,s) est la signature de Q, et $\begin{cases} \lambda_i>0 \text{ si } 1\leqslant i\leqslant p\\ \lambda_i<0 \text{ sinon} \end{cases}$

Algorithme de décomposition de Gauss.

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \le i \ne j \le n} a_{i,j} x_i x_j$$

ullet Premier cas : il existe un entier i tel que $a_{i,i}$ n'est pas nul.

Algorithme de décomposition de Gauss.

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$$

• **Premier cas**: il existe un entier i tel que $a_{i,i}$ n'est pas nul. On supposera pour fixer les idées qu'il s'agit de $a_{1,1}$ et nous noterons ce coefficient a. On peut alors écrire la forme Q sous la forme :

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \le i \ne j \le n} a_{i,j} x_i x_j$$

• **Premier cas**: il existe un entier i tel que $a_{i,i}$ n'est pas nul. On supposera pour fixer les idées qu'il s'agit de $a_{1,1}$ et nous noterons ce coefficient a. On peut alors écrire la forme Q sous la forme :

$$Q(x) = a \left[x_1^2 + x_1 B(x_2, \dots, x_n) \right] + C(x_2, \dots, x_n)$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \le i \ne j \le n} a_{i,j} x_i x_j$$

• **Premier cas** : il existe un entier i tel que $a_{i,i}$ n'est pas nul. On supposera pour fixer les idées qu'il s'agit de $a_{1,1}$ et nous noterons ce coefficient a. On peut alors écrire la forme Q sous la forme :

$$Q(x) = a[x_1^2 + x_1 B(x_2, \dots, x_n)] + C(x_2, \dots, x_n)$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$$

• **Premier cas**: il existe un entier i tel que $a_{i,i}$ n'est pas nul. On supposera pour fixer les idées qu'il s'agit de $a_{1,1}$ et nous noterons ce coefficient a. On peut alors écrire la forme Q sous la forme :

$$Q(x) = a[x_1^2 + x_1 B(x_2, \dots, x_n)] + C(x_2, \dots, x_n)$$

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \right] + C(x_2, \dots, x_n)$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$$

• **Premier cas**: il existe un entier i tel que $a_{i,i}$ n'est pas nul. On supposera pour fixer les idées qu'il s'agit de $a_{1,1}$ et nous noterons ce coefficient a. On peut alors écrire la forme Q sous la forme :

$$Q(x) = a[x_1^2 + x_1 B(x_2, \dots, x_n)] + C(x_2, \dots, x_n)$$

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$$

• Premier cas : il existe un entier i tel que $a_{i,i}$ n'est pas nul. On supposera pour fixer les idées qu'il s'agit de $a_{1,1}$ et nous noterons ce coefficient a. On peut alors écrire la forme Q sous la forme:

$$Q(x) = a[x_1^2 + x_1 B(x_2, \dots, x_n)] + C(x_2, \dots, x_n)$$

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

$$Q(x) = a \left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 + C(x_2, \dots, x_n) - \frac{aB(x_2, \dots, x_n)^2}{4}$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :

$$Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$$

• **Premier cas**: il existe un entier i tel que $a_{i,i}$ n'est pas nul. On supposera pour fixer les idées qu'il s'agit de $a_{1,1}$ et nous noterons ce coefficient a. On peut alors écrire la forme Q sous la forme :

$$Q(x) = a[x_1^2 + x_1 B(x_2, \dots, x_n)] + C(x_2, \dots, x_n)$$

On fait une mise sous forme canonique:

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

$$Q(x) = a\left(x_1 + \frac{B(x_2, \dots, x_n)}{2}\right)^2 + C(x_2, \dots, x_n) - \frac{aB(x_2, \dots, x_n)^2}{4}$$

Il suffit alors de réitérer la méthode de Gauss avec $C(x_2,\ldots,x_n)-rac{aB(x_2,\ldots,x_n)^2}{4}$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :
$$Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1\leqslant i\neq j\leqslant n} a_{i,j} x_i x_j$$

ullet Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire.

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :
$$Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1\leqslant i\neq j\leqslant n} a_{i,j} x_i x_j$$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique :
$$Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

$$Q(x) = a[(x_1 + C)(x_2 + B) -] + D$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

$$Q(x) = a\left[(x_1 + C)(x_2 + B) - \mathbf{C} \times \mathbf{B}\right] + D$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

$$Q(x) = a\left[(x_1 + C)(x_2 + B) - \mathbf{C} \times \mathbf{B}\right] + D$$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

où B et C n'ont pas de x_1 ni de x_2

$$Q(x) = a\left[(x_1 + C)(x_2 + B) - \mathbf{C} \times \mathbf{B}\right] + D$$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$

Puis, on utilise que $\frac{1}{4} \left[(u+v)^2 - (u-v)^2 \right] =$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

où B et C n'ont pas de x_1 ni de x_2 .

$$Q(x) = a\left[(x_1 + C)(x_2 + B) - \mathbf{C} \times \mathbf{B}\right] + D$$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$

Puis, on utilise que $rac{1}{4}ig[(u+v)^2-(u-v)^2ig]=rac{m{u}m{v}}{m{v}}$ pour obtenir :

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leqslant i \neq j \leqslant n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

où B et C n'ont pas de x_1 ni de x_2 .

$$Q(x) = a\left[(x_1 + C)(x_2 + B) - \mathbf{C} \times \mathbf{B}\right] + D$$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$

Puis, on utilise que $\frac{1}{4} \left[(u+v)^2 - (u-v)^2 \right] = {\color{red} uv}$ pour obtenir :

$$Q(x) = \frac{a}{4} \left[\left[\underbrace{(x_1 + C)}_{u} + \underbrace{(x_2 + B)}_{v} \right]^2 - \left[\underbrace{(x_1 + C)}_{u} - \underbrace{(x_2 + B)}_{v} \right]^2 \right] + D - aBC$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1\leqslant i\neq j\leqslant n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme:

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

où B et C n'ont pas de x_1 ni de x_2 .

$$Q(x) = a\left[(x_1 + C)(x_2 + B) - \mathbf{C} \times \mathbf{B}\right] + D$$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$

Puis, on utilise que $\frac{1}{4} \left[(u+v)^2 - (u-v)^2 \right] = {\color{red} uv}$ pour obtenir :

$$Q(x) = \frac{a}{4} \left[\underbrace{\left[\underbrace{(x_1 + C)}_{u} + \underbrace{(x_2 + B)}_{v} \right]^2 - \left[\underbrace{(x_1 + C)}_{u} - \underbrace{(x_2 + B)}_{v} \right]^2}_{l} \right] + D - aBC$$

$$Q(x) = \frac{a}{4} \left[x_1 + x_2 + B + C \right]^2 - \frac{a}{4} \left[x_1 - x_2 + C - B \right]^2 + D - aBC$$

(Algorithme de décomposition de Gauss.)

Considérons la forme quadratique : $Q(x) = \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \leq i \neq j \leq n} a_{i,j} x_i x_j$

• Second cas: tous les $a_{i,i}$ sont nuls. Si Q est identiquement nulle, il n'y a bien sûr rien à faire. Sinon, un des $a_{i,j}$, disons $a=a_{1,2}$ est non nul, et on écrit Q sous la forme :

$$Q(x) = a \left[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \right] + D(x_3, \dots, x_n)$$

où B et C n'ont pas de x_1 ni de x_2 .

$$Q(x) = a\left[(x_1 + C)(x_2 + B) - \mathbf{C} \times \mathbf{B}\right] + D$$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$

Puis, on utilise que $\frac{1}{4}[(u+v)^2-(u-v)^2]=uv$ pour obtenir :

$$Q(x) = \frac{a}{4} \left[\underbrace{\left[\underbrace{(x_1 + C)}_{u} + \underbrace{(x_2 + B)}_{v} \right]^2 - \left[\underbrace{(x_1 + C)}_{u} - \underbrace{(x_2 + B)}_{v} \right]^2}_{l} \right] + D - aBC$$

$$Q(x) = \frac{a}{4} \left[x_1 + x_2 + B + C \right]^2 - \frac{a}{4} \left[x_1 - x_2 + C - B \right]^2 + D - aBC$$

Il suffit alors d'itérer la méthode avec la forme quadratique D-aBC

Exemple $n^o 11$:

 $\bullet \ \ {\rm D\'ecomposons} \ A(x) = x^2 + 13y^2 - 8xy.$

Exemple no 11:

 \bullet Décomposons $A(x)=x^2+13y^2-8xy.$ On est dans le premier cas (mise sous forme canonique) :

Exemple no 11:

• Décomposons $A(x)=x^2+13y^2-8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) =$$

Rappel:
$$Q(x) = a \left[x_1^2 + x_1 B(x_2, \dots, x_n) \right] + C(x_2, \dots, x_n)$$

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

Exemple no 11:

• Décomposons $A(x)=x^2+13y^2-8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_B + \underbrace{13y^2}_C =$$

Rappel:
$$Q(x) = a \left[x_1^2 + x_1 B(x_2, \dots, x_n) \right] + C(x_2, \dots, x_n)$$

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

Exemple no 11:

• Décomposons $A(x)=x^2+13y^2-8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y\right)^2 - (4y)^2\right] + 13y^2 =$$

$$\textbf{Rappel}: Q(x) = a\Big[x_1^2 + x_1B(x_2,\ldots,x_n)\Big] + C(x_2,\ldots,x_n)$$

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

Exemple no 11:

• Décomposons $A(x)=x^2+13y^2-8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y \right)^2 - (4y)^2 \right] + 13y^2 = \left(x - 4y \right)^2 - 3y^2$$

Rappel:
$$Q(x) = a \Big[x_1^2 + x_1 B(x_2, \dots, x_n) \Big] + C(x_2, \dots, x_n)$$

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

Exemple no 11:

• Décomposons $A(x)=x^2+13y^2-8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y \right)^2 - (4y)^2 \right] + 13y^2 = \left(x - 4y \right)^2 - 3y^2$$

Rappel:
$$Q(x) = a \Big[x_1^2 + x_1 B(x_2, \dots, x_n) \Big] + C(x_2, \dots, x_n)$$

On fait la mise sous forme canonique :

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

• Décomposons $B(x) = 2x^2 + 12xy + 23y^2$

Exemple no 11:

• Décomposons $A(x)=x^2+13y^2-8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y \right)^2 - (4y)^2 \right] + 13y^2 = \left(x - 4y \right)^2 - 3y^2$$

$$\textbf{Rappel}: Q(x) = a\Big[x_1^2 + x_1B(x_2,\ldots,x_n)\Big] + C(x_2,\ldots,x_n)$$

On fait la mise sous forme canonique :

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

• Décomposons $B(x)=2x^2+12xy+23y^2$. On est dans le premier cas :

Exemple no 11:

• Décomposons $A(x)=x^2+13y^2-8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y \right)^2 - (4y)^2 \right] + 13y^2 = \left(x - 4y \right)^2 - 3y^2$$

Rappel:
$$Q(x) = a \Big[x_1^2 + x_1 B(x_2, \dots, x_n) \Big] + C(x_2, \dots, x_n)$$

On fait la mise sous forme canonique :

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

• Décomposons $B(x) = 2x^2 + 12xy + 23y^2$. On est dans le premier cas :

$$B(x) = 2x^2 + x\underbrace{(12y)}_B + \underbrace{23y^2}_C =$$

Exemple no 11:

=

• Décomposons $A(x)=x^2+13y^2-8xy.$ On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y \right)^2 - (4y)^2 \right] + 13y^2 = \left(x - 4y \right)^2 - 3y^2$$

Rappel:
$$Q(x) = a \Big[x_1^2 + x_1 B(x_2, \dots, x_n) \Big] + C(x_2, \dots, x_n)$$

On fait la mise sous forme canonique :

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

• Décomposons $B(x)=2x^2+12xy+23y^2$. On est dans le premier cas :

$$B(x) = 2x^{2} + x\underbrace{(12y)}_{B} + \underbrace{23y^{2}}_{C} = 2\Big[\big(x + 3y\big)^{2} - (3y)^{2}\Big] + 23y^{2}$$

◆ロ > ◆団 > ◆ 種 > ◆ 種 > ・ 種 ・ 夕 Q ②

Exemple no 11:

• Décomposons $A(x) = x^2 + 13y^2 - 8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y \right)^2 - (4y)^2 \right] + 13y^2 = \left(x - 4y \right)^2 - 3y^2$$

Rappel:
$$Q(x) = a \left[x_1^2 + x_1 B(x_2, \dots, x_n) \right] + C(x_2, \dots, x_n)$$

On fait la mise sous forme canonique :

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

• Décomposons $B(x) = 2x^2 + 12xy + 23y^2$. On est dans le premier cas :

$$B(x) = 2x^{2} + x \underbrace{(12y)}_{B} + \underbrace{23y^{2}}_{C} = 2[(x+3y)^{2} - (3y)^{2}] + 23y^{2}$$
$$= 2(x+3y)^{2} - 18y^{2} + 23y^{2}$$



Exemple no 11:

• Décomposons $A(x) = x^2 + 13y^2 - 8xy$. On est dans le premier cas (mise sous forme canonique) :

$$A(x) = x^2 + x\underbrace{(-8y)}_{B} + \underbrace{13y^2}_{C} = \left[\left(x - 4y \right)^2 - (4y)^2 \right] + 13y^2 = \left(x - 4y \right)^2 - 3y^2$$

Rappel:
$$Q(x) = a[x_1^2 + x_1 B(x_2, ..., x_n)] + C(x_2, ..., x_n)$$

On fait la mise sous forme canonique :

$$Q(x) = a \left[\left(x_1 + \frac{B(x_2, \dots, x_n)}{2} \right)^2 - \left(\frac{B(x_2, \dots, x_n)}{2} \right)^2 \right] + C(x_2, \dots, x_n)$$

• Décomposons $B(x) = 2x^2 + 12xy + 23y^2$. On est dans le premier cas :

$$\begin{split} B(x) &= 2x^2 + x\underbrace{(12y)}_B + \underbrace{23y^2}_C = 2\Big[\big(x + 3y\big)^2 - (3y)^2\Big] + 23y^2 \\ &= 2\big(x + 3y\big)^2 - 18y^2 + 23y^2 \\ &= 2\big(x + 3y\big)^2 + 5y^2 \end{split}$$

C(x, y, z) = xy - 2xz + yz.

• C(x, y, z) = xy - 2xz + yz

On est dans le second cas :

$$Q(x)=a\Big[x_1x_2+x_1B(x_3,\ldots,x_n)+x_2C(x_3,\ldots,x_n)\Big]+D(x_3,\ldots,x_n)$$

$$Q(x)=a(x_1+C)(x_2+B)+D-aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2-(u-v)^2\big]=uv$$

 \bullet C(x,y,z) = xy - 2xz + yz.

On est dans le second cas :

$$Q(x)=a\Big[x_1x_2+x_1B(x_3,\ldots,x_n)+x_2C(x_3,\ldots,x_n)\Big]+D(x_3,\ldots,x_n)$$

$$Q(x)=a(x_1+C)(x_2+B)+D-aBC$$
 Puis, on utilise que $\frac{1}{4}\big[(u+v)^2-(u-v)^2\big]=uv$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$

$$C(x, y, z) = xy + x\underbrace{(-2z)}_{B} + y\underbrace{(z)}_{C} + \underbrace{0}_{D}$$

C(x, y, z) = xy - 2xz + yz.

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\ldots,x_n) + x_2C(x_3,\ldots,x_n)\Big] + D(x_3,\ldots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

$$C(x, y, z) = xy + x \underbrace{(-2z)}_{B} + y \underbrace{(z)}_{C} + \underbrace{0}_{D}$$
$$= \underbrace{(x+z)(y-2z)}_{y} + 2z^{2}$$

C(x, y, z) = xy - 2xz + yz

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\ldots,x_n) + x_2C(x_3,\ldots,x_n)\Big] + D(x_3,\ldots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

$$\begin{split} C(x,y,z) &= xy + x\underbrace{(-2z)}_{B} + y\underbrace{(z)}_{C} + \underbrace{0}_{D} \\ &= \underbrace{(x+z)}_{u}\underbrace{(y-2z)}_{v} + 2z^{2} \\ &= \frac{1}{4} \Big[\underbrace{\left[(x+z) + (y-2z)\right]^{2}}_{(u+v)^{2}} - \underbrace{\left[(x+z) + (y-2z)\right]^{2}}_{u} - \underbrace{$$

C(x, y, z) = xy - 2xz + yz.

=

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\dots,x_n) + x_2C(x_3,\dots,x_n)\Big] + D(x_3,\dots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

$$\begin{split} C(x,y,z) &= xy + x\underbrace{(-2z)}_{B} + y\underbrace{(z)}_{C} + \underbrace{0}_{D} \\ &= \underbrace{(x+z)(y-2z)}_{v} + 2z^{2} \\ &= \frac{1}{4} \bigg[\underbrace{[(x+z) + (y-2z)]^{2}}_{(u+v)^{2}} - \underbrace{[(x+z) - (y-2z)]^{2}}_{(u-v)^{2}} \bigg] + 2z^{2} \end{split}$$

C(x, y, z) = xy - 2xz + yz.

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\dots,x_n) + x_2C(x_3,\dots,x_n)\Big] + D(x_3,\dots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

$$\begin{split} C(x,y,z) &= xy + x\underbrace{(-2z)}_{B} + y\underbrace{(z)}_{C} + \underbrace{0}_{D} \\ &= \underbrace{(x+z)(y-2z)}_{v} + 2z^{2} \\ &= \frac{1}{4} \bigg[\underbrace{[(x+z) + (y-2z)]^{2}}_{(u+v)^{2}} - \underbrace{[(x+z) - (y-2z)]^{2}}_{(u-v)^{2}} \bigg] + 2z^{2} \\ &= \frac{1}{4} \big[x + y - z \big]^{2} - \end{split}$$

C(x, y, z) = xy - 2xz + yz.

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\dots,x_n) + x_2C(x_3,\dots,x_n)\Big] + D(x_3,\dots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$

$$\text{Puis, on utilise que } \frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = \underbrace{uv}$$

$$\begin{split} C(x,y,z) &= xy + x\underbrace{(-2z)}_{B} + y\underbrace{(z)}_{C} + \underbrace{0}_{D} \\ &= \underbrace{(x+z)(y-2z)}_{v} + 2z^{2} \\ &= \frac{1}{4} \bigg[\underbrace{[(x+z) + (y-2z)]^{2}}_{(u+v)^{2}} - \underbrace{[(x+z) - (y-2z)]^{2}}_{(u-v)^{2}} \bigg] + 2z^{2} \\ &= \frac{1}{4} \big[x + y - z \big]^{2} - \frac{1}{4} \big[x - y + 3z \big]^{2} + 2z^{2} \end{split}$$

D(x,y,z,t) = xy + xz + xt - 2yt.

• D(x, y, z, t) = xy + xz + xt - 2yt

On est dans le second cas :

$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\dots,x_n) + x_2C(x_3,\dots,x_n)\Big] + D(x_3,\dots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

• D(x, y, z, t) = xy + xz + xt - 2yt.

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\ldots,x_n) + x_2C(x_3,\ldots,x_n)\Big] + D(x_3,\ldots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

$$=xy+x\underbrace{(z+t)}_B+y\underbrace{(-2t)}_C=$$

• D(x, y, z, t) = xy + xz + xt - 2yt.

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\ldots,x_n) + x_2C(x_3,\ldots,x_n)\Big] + D(x_3,\ldots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

$$=xy+x\underbrace{(z+t)}_B+y\underbrace{(-2t)}_C=\underbrace{(x-2t)}_u\underbrace{(y+(z+t))}_v+2t(z+t)$$

• D(x, y, z, t) = xy + xz + xt - 2yt.

On est dans le second cas :
$$Q(x) = a\Big[x_1x_2 + x_1B(x_3,\ldots,x_n) + x_2C(x_3,\ldots,x_n)\Big] + D(x_3,\ldots,x_n)$$

$$Q(x) = a(x_1+C)(x_2+B) + D - aBC$$
 Puis, on utilise que
$$\frac{1}{4}\big[(u+v)^2 - (u-v)^2\big] = uv$$

$$=xy+x\underbrace{(z+t)}_{B}+y\underbrace{(-2t)}_{C}=\underbrace{(x-2t)}_{u}\underbrace{(y+(z+t))}_{v}+2t(z+t)$$

$$=\frac{1}{4}\left[\left[\underbrace{(x-2t)}_{D}+\underbrace{(y+(z+t))}_{D}\right]^{2}-\left[\underbrace{(x-2t)}_{D}-\underbrace{(y+(z+t))}_{D}\right]^{2}\right]+2t(z+t)$$

• D(x, y, z, t) = xy + xz + xt - 2yt

On est dans le second cas :
$$Q(x) = a \Big[x_1 x_2 + x_1 B(x_3, \dots, x_n) + x_2 C(x_3, \dots, x_n) \Big] + D(x_3, \dots, x_n)$$

$$Q(x) = a(x_1 + C)(x_2 + B) + D - aBC$$
Puis, on utilise que
$$\frac{1}{4} \Big[(u + v)^2 - (u - v)^2 \Big] = uv$$

$$= xy + x \underbrace{(z + t)}_B + y \underbrace{(-2t)}_C = \underbrace{(x - 2t)}_u \underbrace{(y + (z + t))}_v + 2t(z + t)$$

$$= \frac{1}{4} \left[\underbrace{(x - 2t)}_C + \underbrace{(y + (z + t))}_C \right]^2 - \underbrace{(x - 2t)}_C - \underbrace{(y + (z + t))}_C \right]^2 + 2t(z + t)$$

$$= \frac{1}{4} \left[\underbrace{\left[\underbrace{(x-2t)}_{u} + \underbrace{(y+(z+t))}_{v} \right]}_{v} - \underbrace{\left[\underbrace{(x-2t)}_{u} + \underbrace{(y+(z+t))}_{v} \right]}_{v} \right] + 2$$

$$= \frac{1}{4} (x-t+y+z)^{2} - \frac{1}{4} (x-3t-y-z)^{2} + 2t^{2} + 2tz$$

• D(x, y, z, t) = xy + xz + xt - 2yt $=rac{1}{4}\left[\left[\underbrace{(x-2t)}_{y}+\underbrace{(y+(z+t))}_{y}
ight]^{2}-\left[\underbrace{(x-2t)}_{y}-\underbrace{(y+(z+t))}_{y}
ight]^{2}
ight]+2t(z+t)$

 $=\frac{1}{4}(x-t+y+z)^2-\frac{1}{4}(x-3t-y-z)^2+2t^2+2tz$

$$\begin{aligned} \bullet \ & D(x,y,z,t) = xy + xz + xt - 2yt. \\ & = xy + x\underbrace{(z+t)}_{B} + y\underbrace{(-2t)}_{C} = \underbrace{(x-2t)}_{u}\underbrace{(y+(z+t))}_{v} + 2t(z+t) \\ & = \frac{1}{4} \left[\underbrace{\left[\underbrace{(x-2t)}_{u} + \underbrace{(y+(z+t))}_{v}\right]^{2} - \left[\underbrace{(x-2t)}_{u} - \underbrace{(y+(z+t))}_{v}\right]^{2}}_{l} \right] + 2t(z+t) \\ & = \frac{1}{4}(x-t+y+z)^{2} - \frac{1}{4}(x-3t-y-z)^{2} + 2t^{2} + 2tz \end{aligned}$$

On revient au premier cas pour décomposer $2t^2+2tz$:

$$2t^2 + 2tz = 2(t^2 + tz) =$$

$$\begin{aligned} \bullet \ & D(x,y,z,t) = xy + xz + xt - 2yt. \\ & = xy + x\underbrace{(z+t)}_{B} + y\underbrace{(-2t)}_{C} = \underbrace{(x-2t)}_{u}\underbrace{(y+(z+t))}_{v} + 2t(z+t) \\ & = \frac{1}{4} \left[\underbrace{\left[\underbrace{(x-2t)}_{u} + \underbrace{(y+(z+t))}_{v}\right]^{2} - \left[\underbrace{(x-2t)}_{u} - \underbrace{(y+(z+t))}_{v}\right]^{2}}_{l} \right] + 2t(z+t) \\ & = \frac{1}{4}(x-t+y+z)^{2} - \frac{1}{4}(x-3t-y-z)^{2} + 2t^{2} + 2tz \end{aligned}$$

On revient au premier cas pour décomposer $2t^2 + 2tz$:

$$2t^{2} + 2tz = 2(t^{2} + tz) = 2\left[\left(t + \frac{1}{2}z\right)^{2} - \left(\frac{1}{2}z\right)^{2}\right]$$

•
$$D(x, y, z, t) = xy + xz + xt - 2yt$$
.

$$= xy + x\underbrace{(z+t)}_{B} + y\underbrace{(-2t)}_{C} = \underbrace{(x-2t)}_{u} \underbrace{(y+(z+t))}_{v} + 2t(z+t)$$

$$= \frac{1}{4} \left[\underbrace{\left[\underbrace{(x-2t)}_{u} + \underbrace{(y+(z+t))}_{v}\right]^{2} - \left[\underbrace{(x-2t)}_{u} - \underbrace{(y+(z+t))}_{v}\right]^{2}}_{l} + 2t(z+t) \right]$$

$$= \frac{1}{4} (x-t+y+z)^{2} - \frac{1}{4} (x-3t-y-z)^{2} + 2t^{2} + 2tz$$

On revient au **premier** cas pour décomposer $2t^2 + 2tz$:

$$\begin{aligned} &2t^2 + 2tz = 2(t^2 + tz) = 2\left[\left(t + \frac{1}{2}z\right)^2 - \left(\frac{1}{2}z\right)^2\right] \\ &D(x, y, z, t) = \frac{1}{4}(x - t + y + z)^2 - \frac{1}{4}(x - 3t - y - z)^2 + 2\left(t + \frac{1}{2}z\right)^2 - \frac{1}{2}z^2 \end{aligned}$$

Définition:

Dans une base orthonormée, le produit scalaire est une forme bilinéaire dont la matrice est la matrice **identité**.

Définition:

Dans une base orthonormée, le produit scalaire est une forme bilinéaire dont la matrice est la matrice **identité**.

Propriété:

Les vecteurs propres associés à des valeurs propres distinctes d'une matrice symétrique réelle sont toujours orthogonaux.

Démonstration

Soit A une matrice réelle symétrique. Soient λ_1 et λ_2 deux valeurs propres distinctes $(\lambda_1 \neq$ $\lambda_2)$ de A. Soient $\overrightarrow{v_1}$ un vecteur propre associé à λ_1 et $\overrightarrow{v_2}$ à λ_2 .

Plaçons-nous dans un repère orthonormée : on a $\overrightarrow{d} \cdot \overrightarrow{b} = {}^t \overrightarrow{d} I \overrightarrow{b} = {}^t \overrightarrow{d} \overrightarrow{b}$, et on rappelle

$$^{t}(CD) = {}^{t}D^{t}C$$

Donc,
$$(A\overrightarrow{v_1}) \cdot \overrightarrow{v_2} = \lambda_1 \overrightarrow{v_1} \cdot \overrightarrow{v_2} = \lambda_1 (\overrightarrow{v_1} \cdot \overrightarrow{v_2})$$

 $\begin{array}{l} \mathsf{Donc}, \; \left(A\overrightarrow{v_1} \right) \cdot \overrightarrow{v_2} = \lambda_1 \overrightarrow{v_1} \cdot \overrightarrow{v_2} = \lambda_1 \left(\overrightarrow{v_1} \cdot \overrightarrow{v_2} \right) \\ \mathsf{Comme} \; A \; \mathsf{est} \; \mathsf{sym\acute{e}trique} \; \left(A\overrightarrow{v_1} \right) \cdot \overrightarrow{v_2} = {}^t \left(A\overrightarrow{v_1} \right) \overrightarrow{v_2} = {}^t \overrightarrow{v_1} {}^t A \overrightarrow{v_2} \; \underset{A \; \mathsf{sym\acute{e}trique}}{=} \; {}^t \overrightarrow{v_1} A \overrightarrow{v_2} = \overrightarrow{v_1} \; \cdot \end{array}$

$$=\overrightarrow{v_1}\cdot\left(\lambda_2\overrightarrow{v_2}\right)=\lambda_2\big(\overrightarrow{v_1}\cdot\overrightarrow{v_2}\big)$$

$$\begin{aligned} &\text{Ainsi, } (A\overrightarrow{v_1}) \cdot \overrightarrow{v_2} = \lambda_1 (\overrightarrow{v_1} \cdot \overrightarrow{v_2}) = \lambda_2 (\overrightarrow{v_1} \cdot \overrightarrow{v_2}) \text{ donc } \lambda_1 (\overrightarrow{v_1} \cdot \overrightarrow{v_2}) - \lambda_2 (\overrightarrow{v_1} \cdot \overrightarrow{v_2}) = 0 \\ &\text{Soit } (\lambda_1 - \lambda_2) (\overrightarrow{v_1} \cdot \overrightarrow{v_2}) = 0, \text{ comme } \lambda_1 \neq \lambda_2, \text{ on a } \overrightarrow{v_1} \cdot \overrightarrow{v_2} = 0. \end{aligned}$$

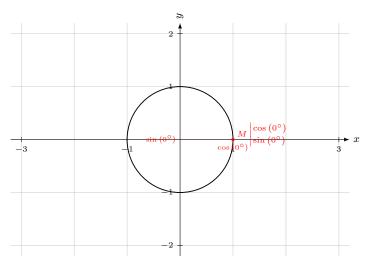
Soit
$$(\lambda_1 - \lambda_2)(\overrightarrow{v_1} \cdot \overrightarrow{v_2}) = 0$$
, comme $\lambda_1 \neq \lambda_2$, on a $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = 0$

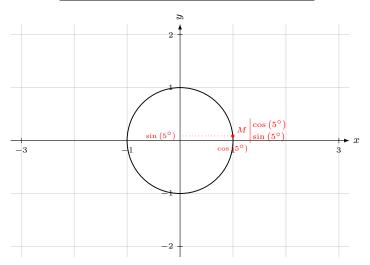
Propriété:

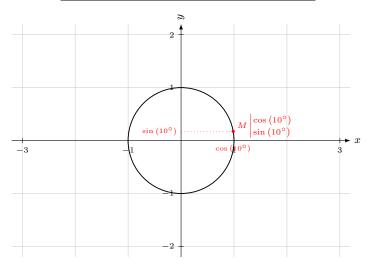
Etant donnée une forme bilinéaire réelle symétrique dont la matrice est B dans une base orthonormée. Il existe une base orthonormée formée de vecteurs propres de B où la matrice de la forme bilinéaire est diagonale.

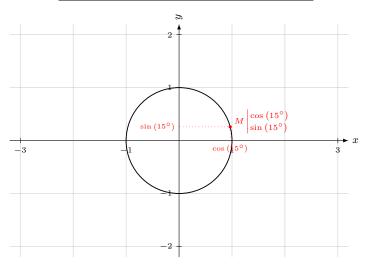
Etant donnée une forme bilinéaire réelle symétrique dont la matrice est B dans une base orthonormée. Il existe une base orthonormée formée de vecteurs propres de B où la matrice de la forme bilinéaire est diagonale.

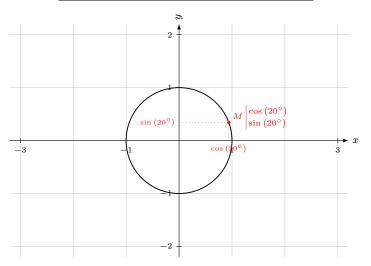
Cette méthode est en générale plus longue que la méthode de Gauss.

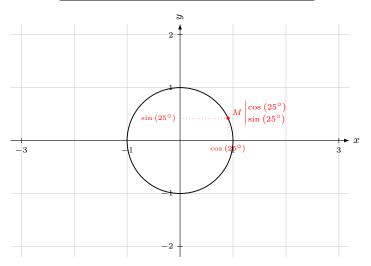


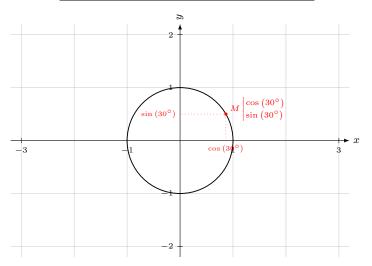


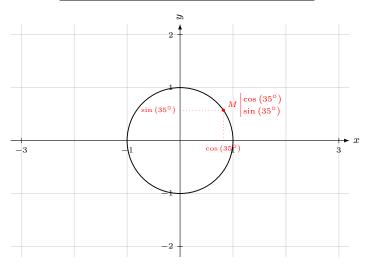


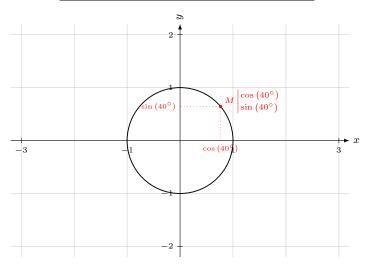


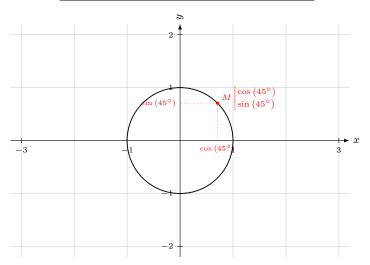


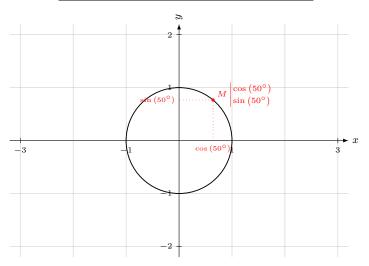


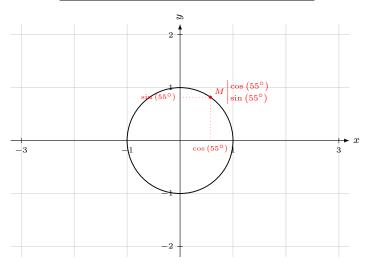


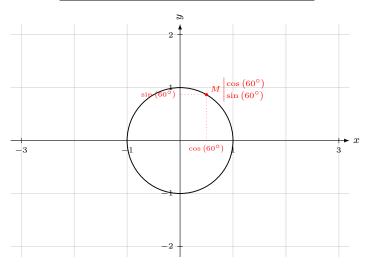


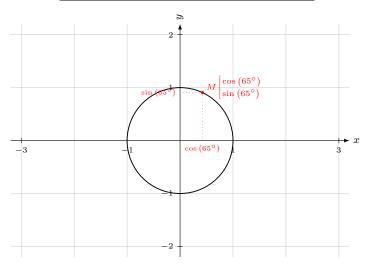


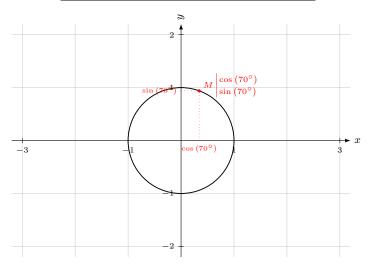


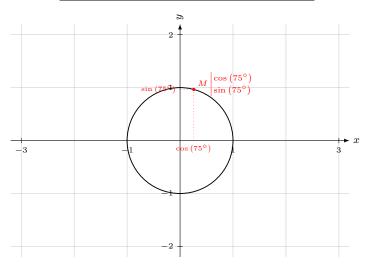


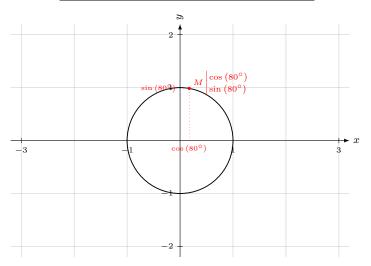


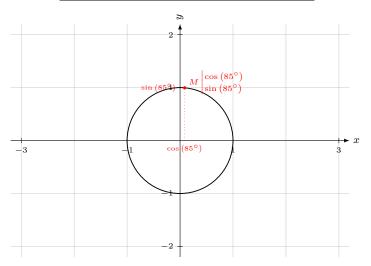


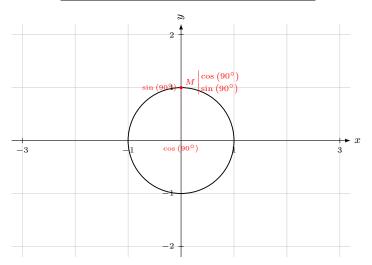


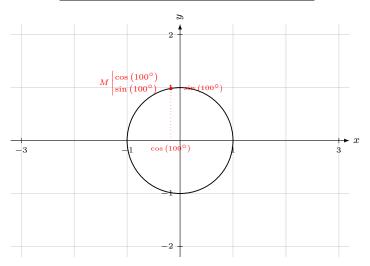


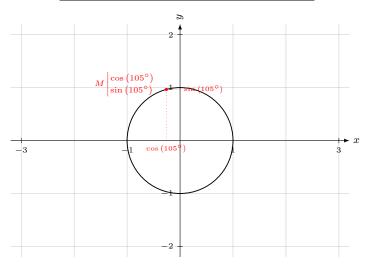


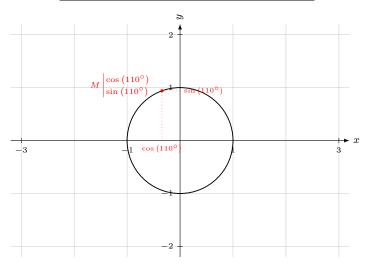


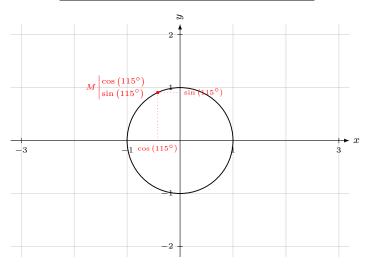


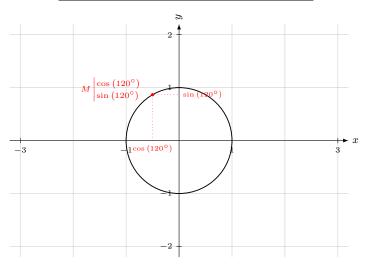


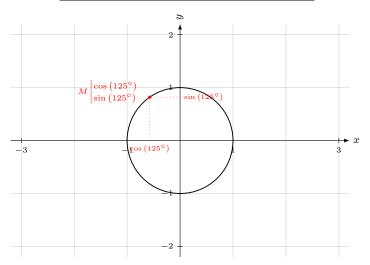


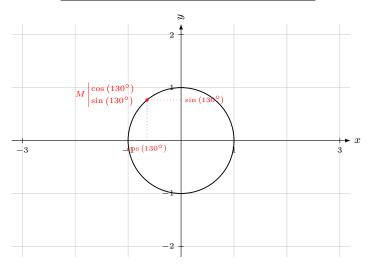


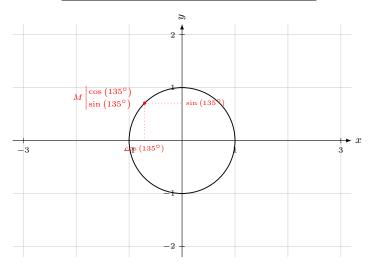


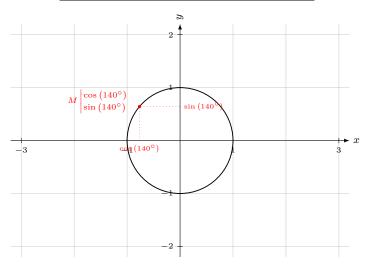


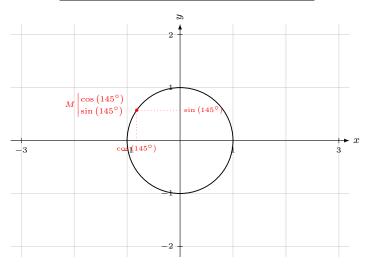


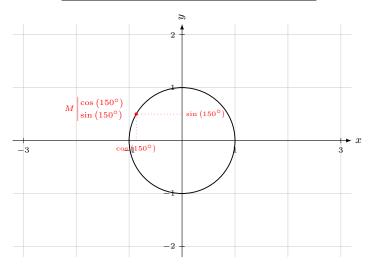


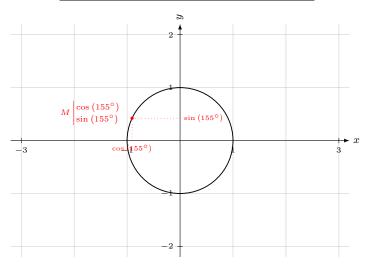


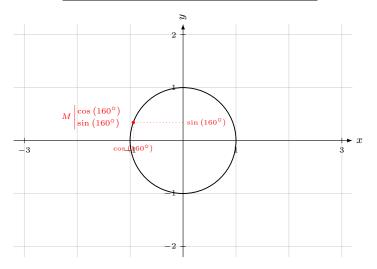


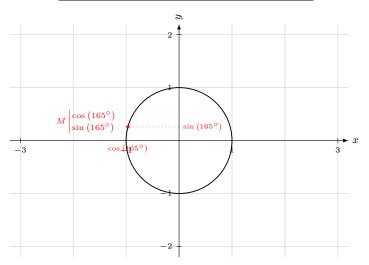


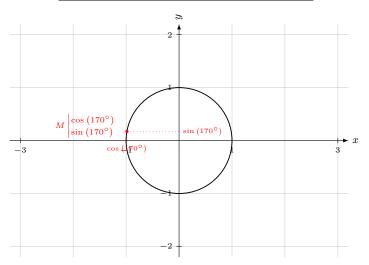


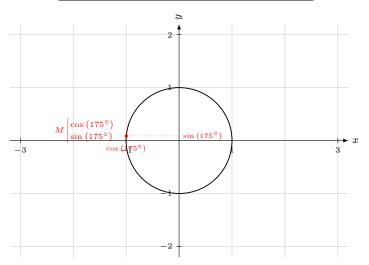


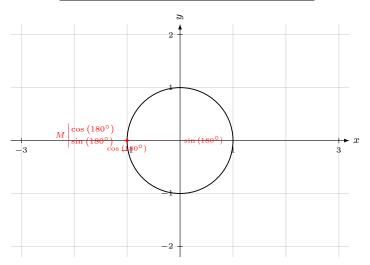


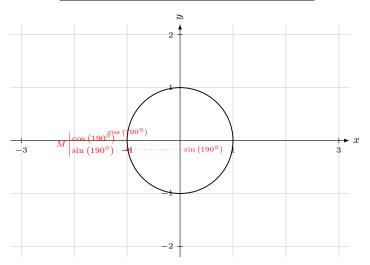


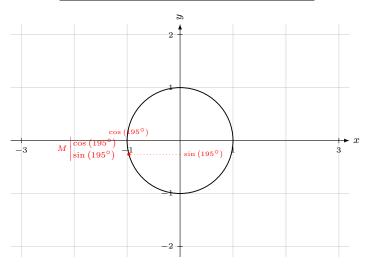


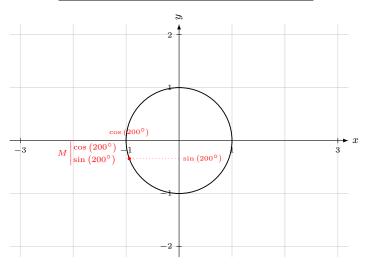


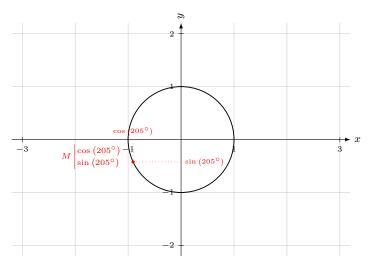


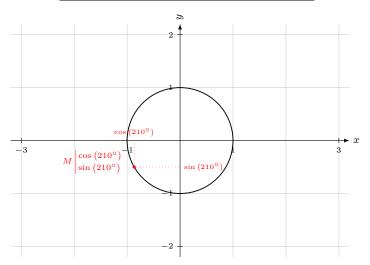


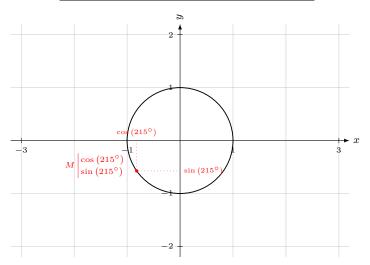


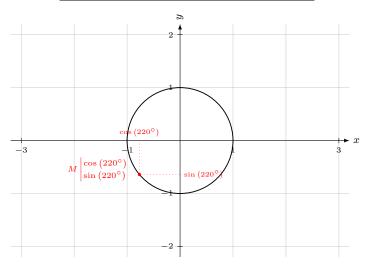


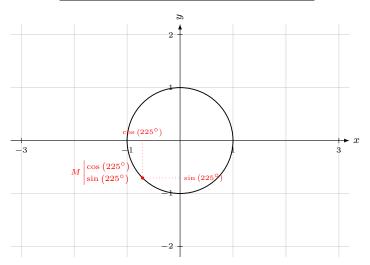


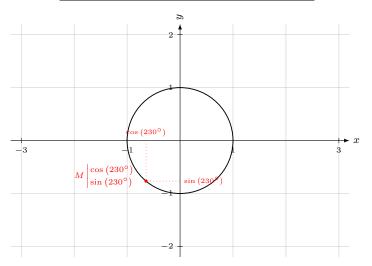


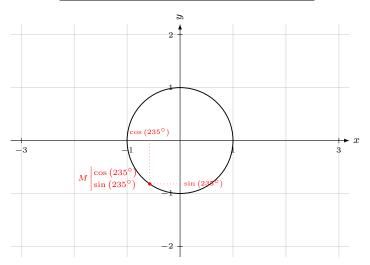


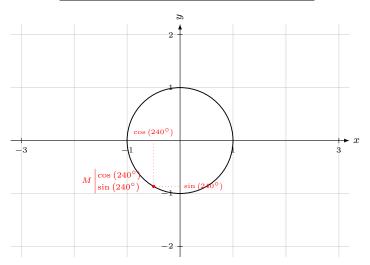


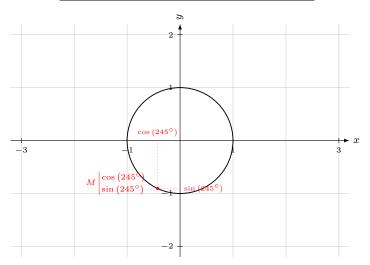


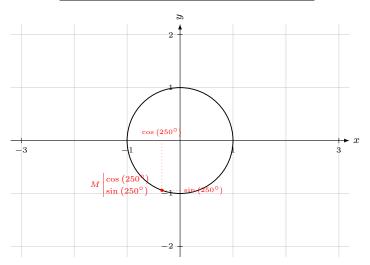


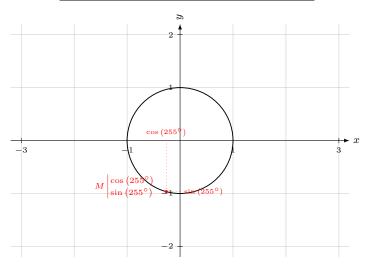


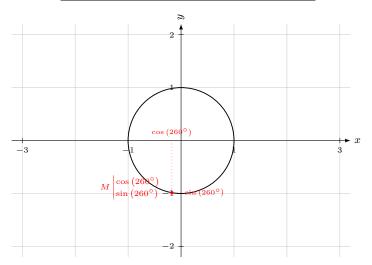


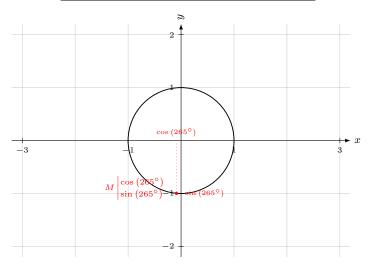


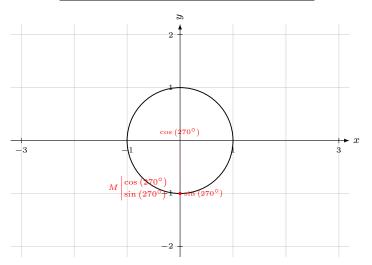


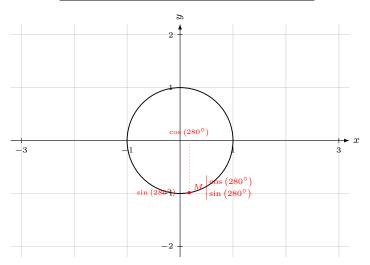


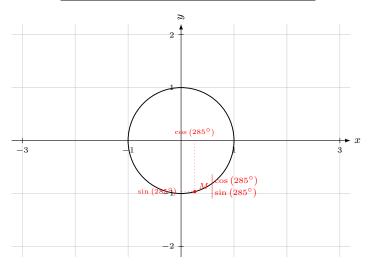


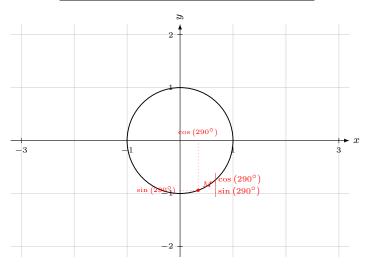


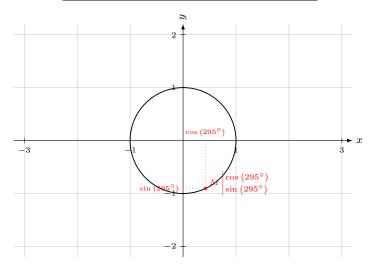


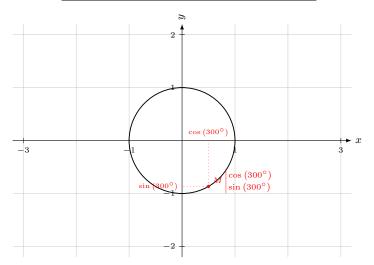


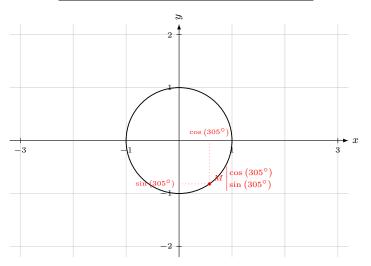


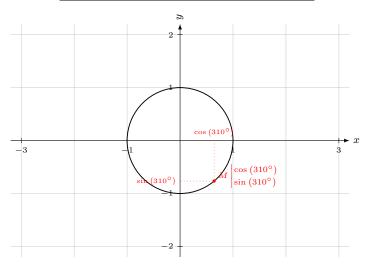


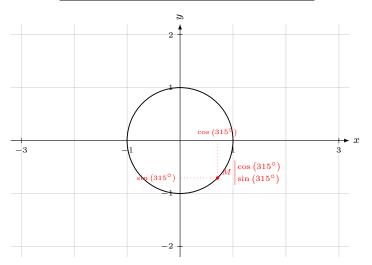


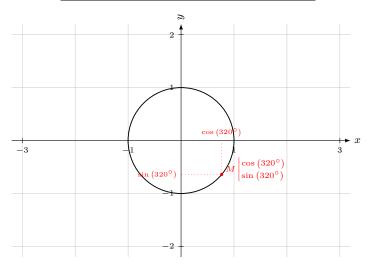


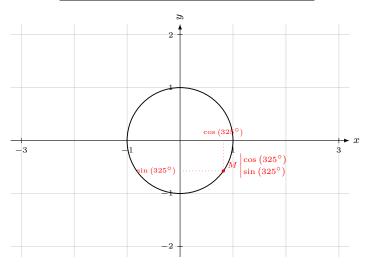


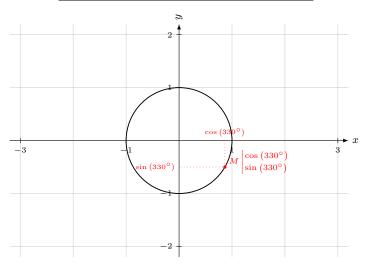


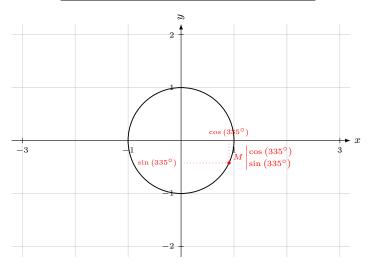


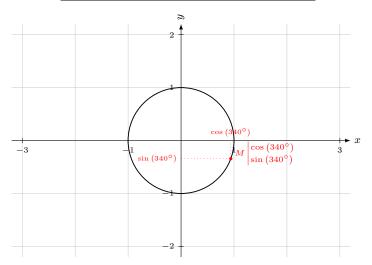


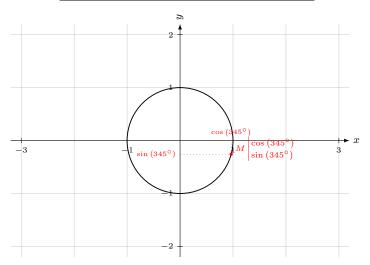


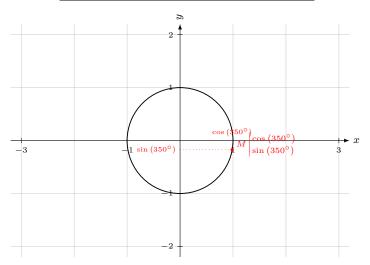


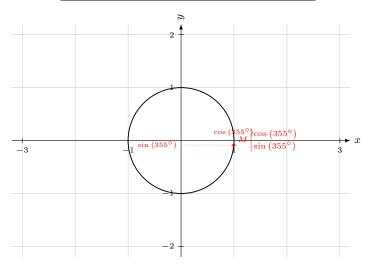


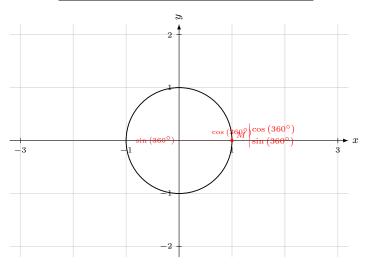


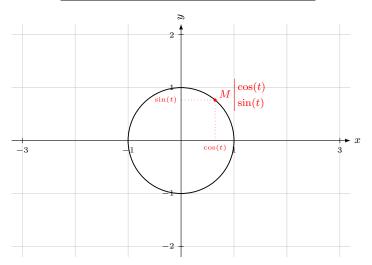


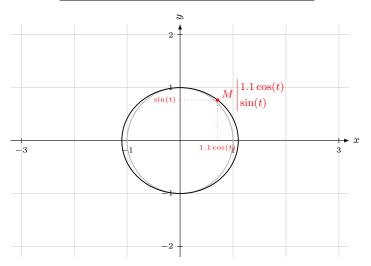


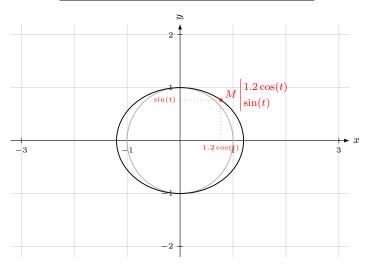


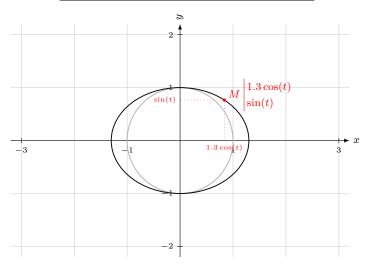


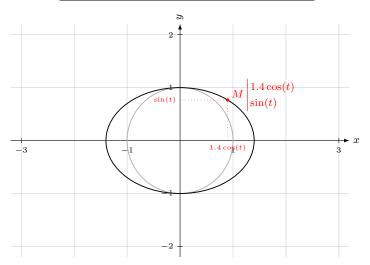


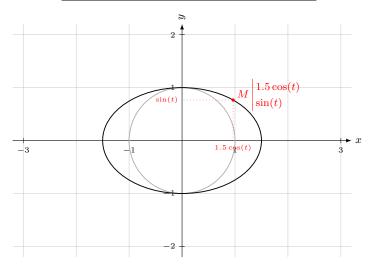


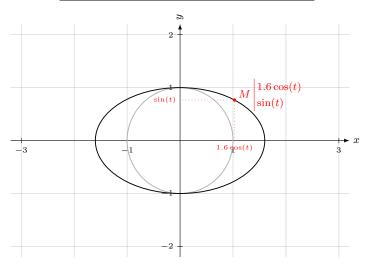


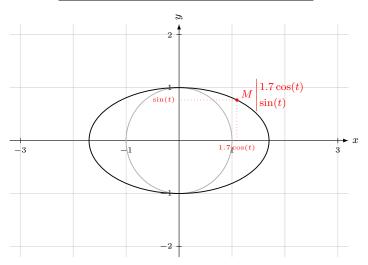


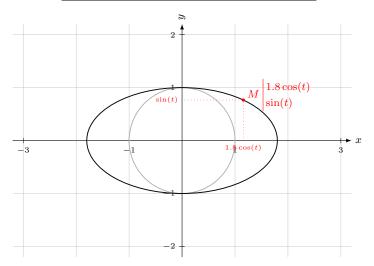


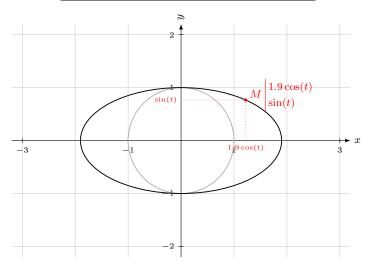


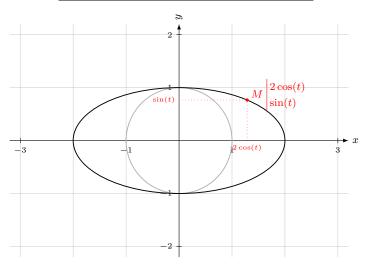


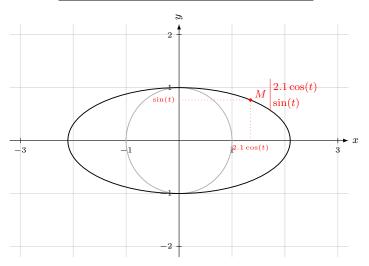


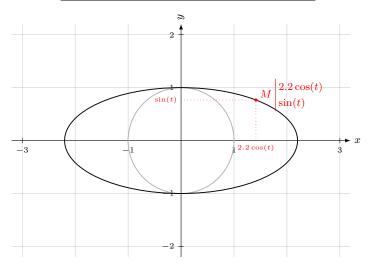


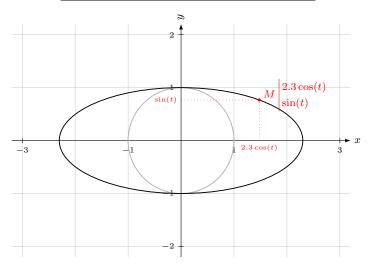


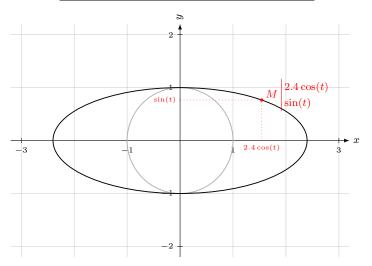


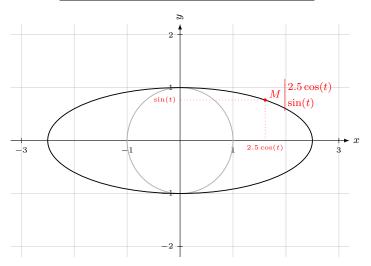


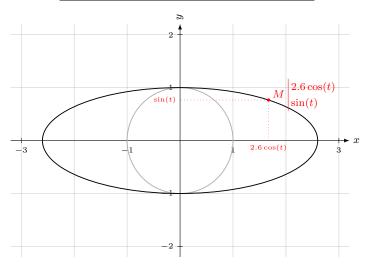


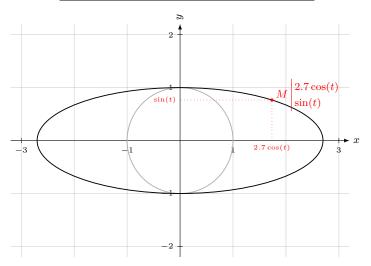


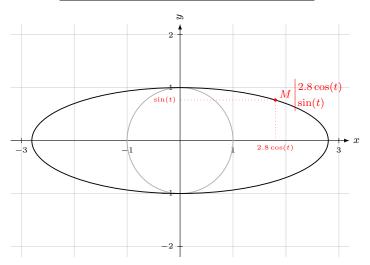


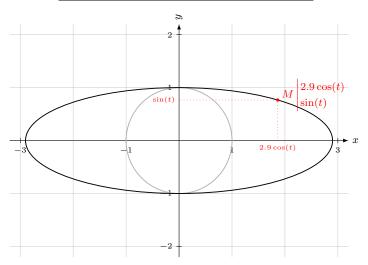


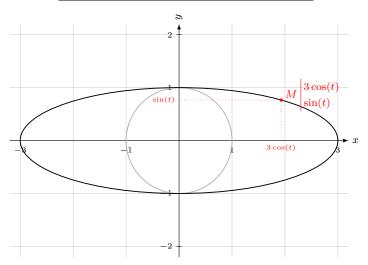


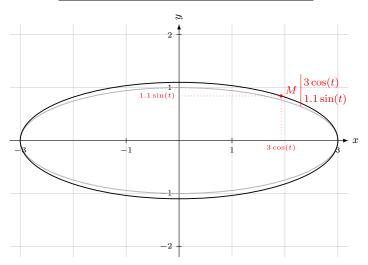


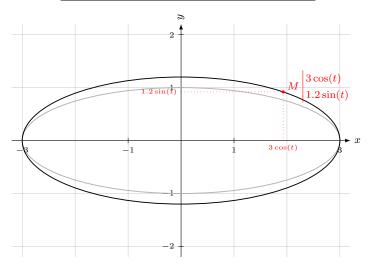


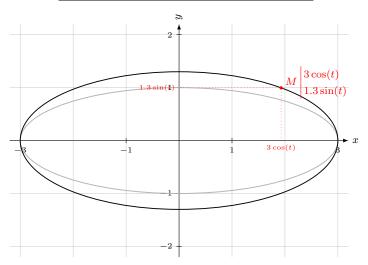


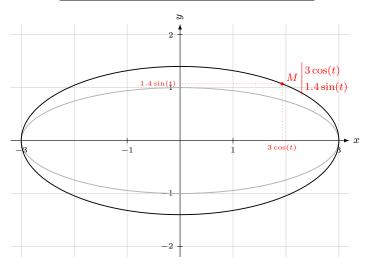


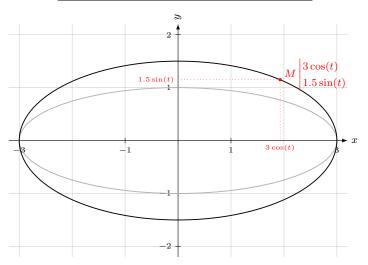


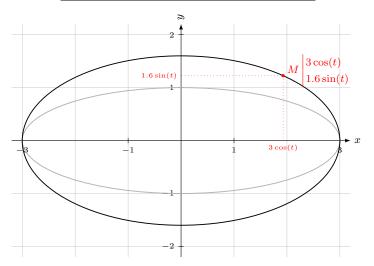


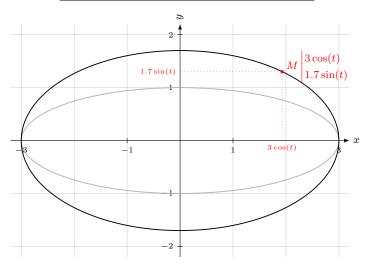


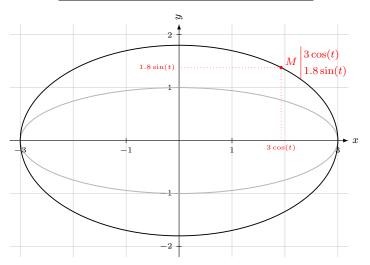


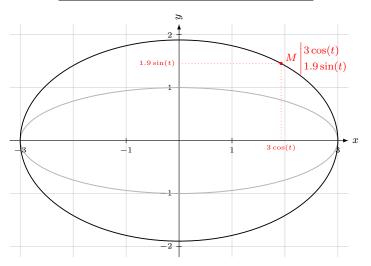


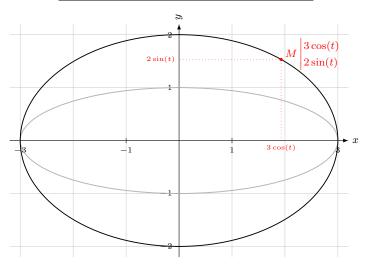


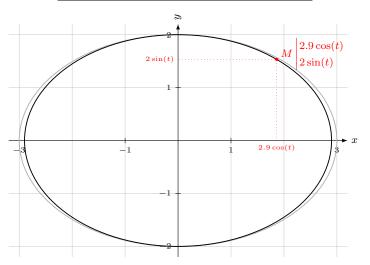


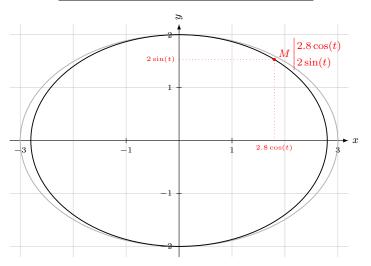


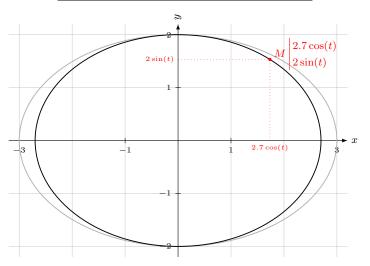


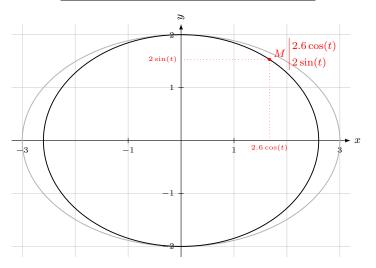


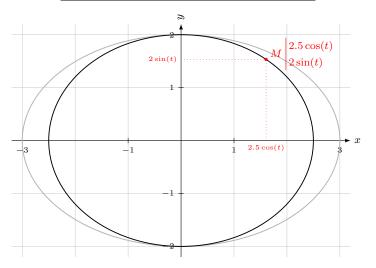


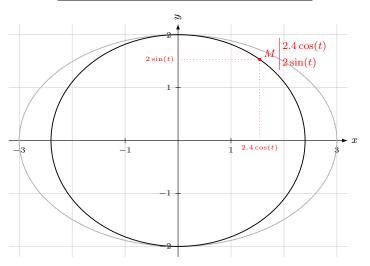


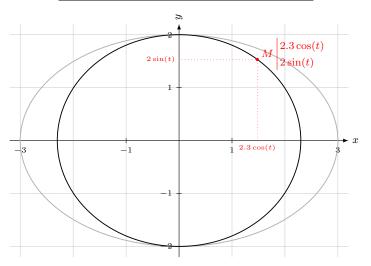


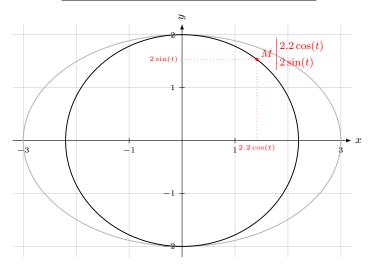


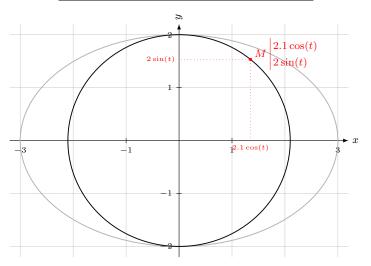


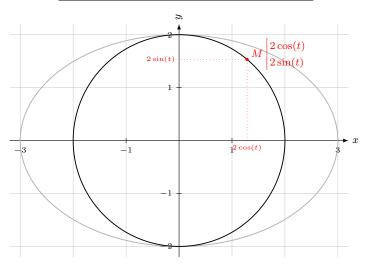


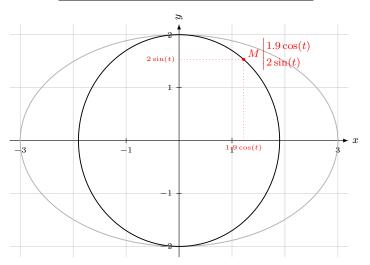


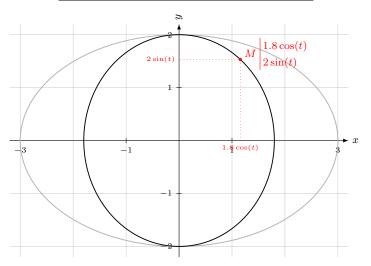


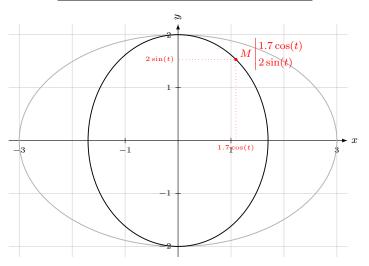


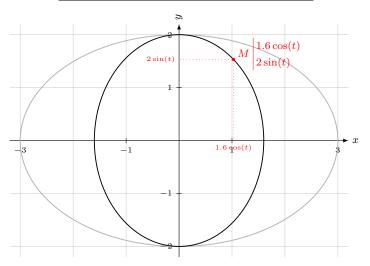


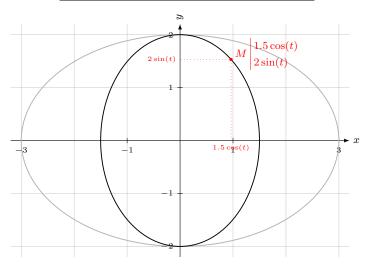


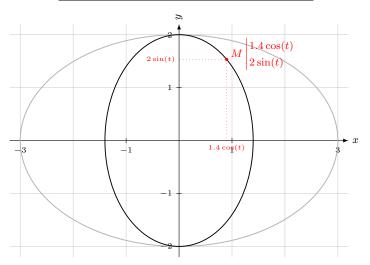


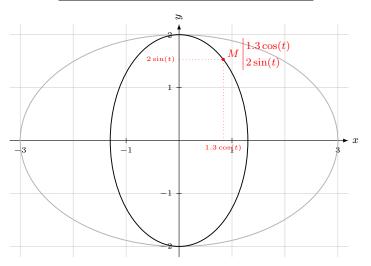




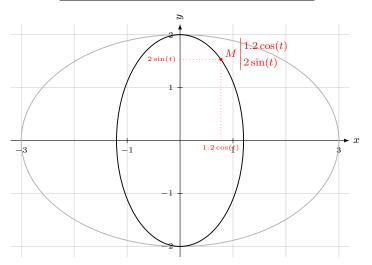




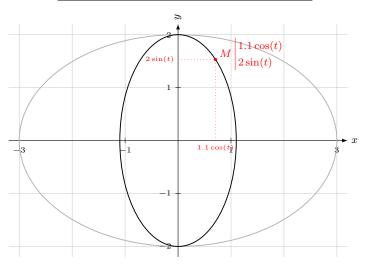




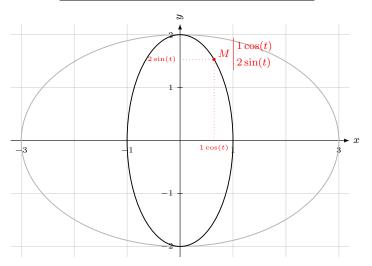
3. Représentation graphique d'une ellipse.

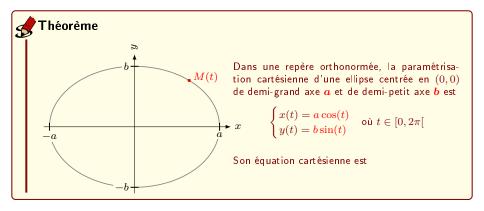


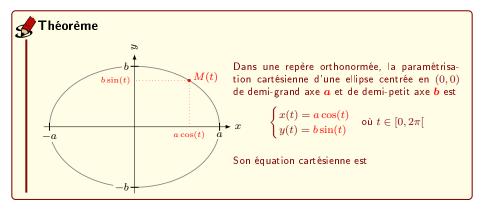
3. Représentation graphique d'une ellipse.

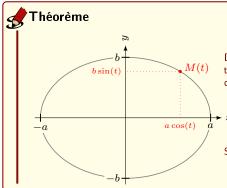


3. Représentation graphique d'une ellipse.





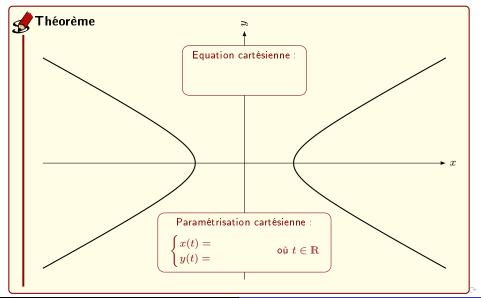


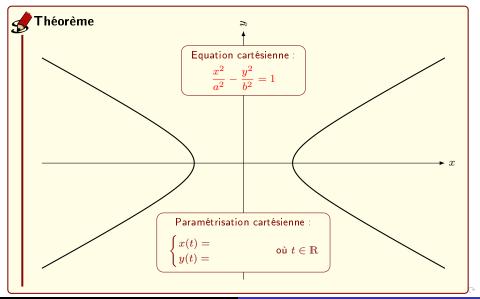


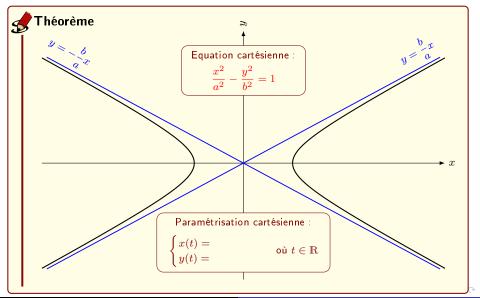
Dans une repère orthonormée, la paramétrisation cartésienne d'une ellipse centrée en (0,0) de demi-grand axe \boldsymbol{a} et de demi-petit axe \boldsymbol{b} est

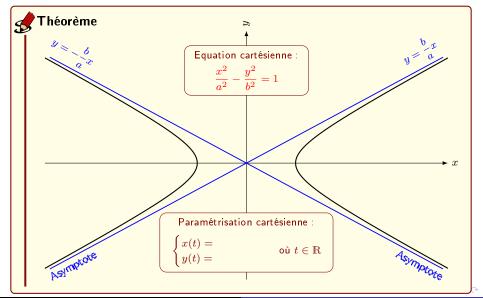
$$\begin{cases} x(t) = a\cos(t) \\ y(t) = b\sin(t) \end{cases} \text{ où } t \in [0, 2\pi[$$

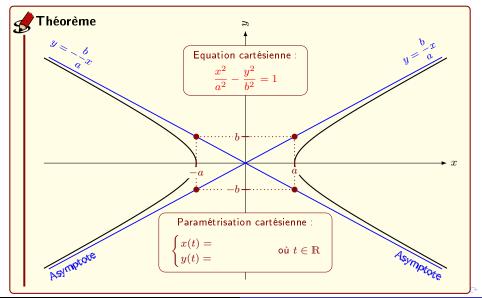
Son équation cartésienne est $\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

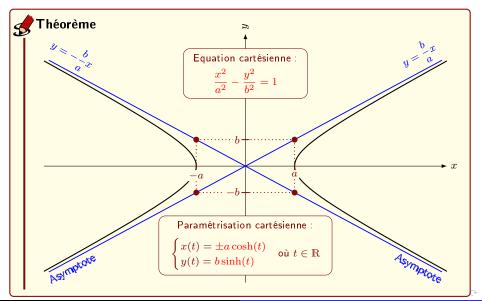












5. Forme quadratiques binaire : les coniques.

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

• Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- $\textbf{ Dans le plan affine, l'équation d'une conique est} \underbrace{Ax^2 + By^2 + Cxy}_{ \textbf{partie vectorielle (forme quadratique)}} = \underbrace{Dx + Ey + F}_{ \textbf{partie affine quadratique)}}$

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle (forme quadratique)}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

Equation type	Signature de la forme quadratique	Nom de ∣a conique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$		

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$		

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	Ellipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$		

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

Equation type	Signature de la forme quadratique	Nom de ∣a conique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	Ellipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	(2,0)	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$		

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	Ellipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	(2,0)	vide
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$		

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	Ellipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	(2,0)	vide
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	(2,0)	

5. Forme quadratiques binaire : les coniques.

Une forme quadratiques binaires est une forme quadratique à deux variables, autrement dit, un polynôme homogène de degré 2 à deux variables. Dans le plan affine \mathbb{R}^2 , elles sont représentées par des courbes appelées coniques.

- Dans le plan vectoriel, une forme binaire est $Ax^2 + By^2 + Cxy$.
- Dans le plan affine, l'équation d'une conique est $\underbrace{Ax^2 + By^2 + Cxy}_{\text{partie vectorielle}} = \underbrace{Dx + Ey + F}_{\text{partie affine}}$

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	Ellipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	(2,0)	vide
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	(2,0)	le point $(0,0)$

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$		
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$		
$x^2 - y = 0$		
$x^2 + 1 = 0$		
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	
$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 0$		
$x^2 - y = 0$		
$x^2 + 1 = 0$		
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	Hyperbole
$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 0$		
$x^2 - y = 0$		
$x^2 + 1 = 0$		
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{\frac{x^2}{a^2} - \frac{y^2}{b^2}}{\frac{x^2}{a^2} - \frac{y^2}{b^2}} = 1$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	
$x^2 - y = 0$		
$x^2 + 1 = 0$		
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$		
$x^2 + 1 = 0$		
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	
$x^2 + 1 = 0$		
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	Hyperbole
$\frac{\frac{x^2}{a^2} - \frac{y^2}{b^2}}{\frac{x^2}{a^2} - \frac{y^2}{b^2}} = 1$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	Parabole
$x^2 + 1 = 0$		
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1}{\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0}$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	Parabole
$x^2 + 1 = 0$	(1,0)	
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	Parabole
$x^2 + 1 = 0$	(1,0)	Vide
$x^2 - 1 = 0$		
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	Parabole
$x^2 + 1 = 0$	(1,0)	Vide
$x^2 - 1 = 0$	(1,0)	
$x^2 = 0$		

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	Parabole
$x^2 + 1 = 0$	(1,0)	Vide
	(4. 7)	D 1 1/2 1121
$x^2 - 1 = 0$	(1,0)	Deux droites parallèles

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	Parabole
	(=, =)	
$x^2 + 1 = 0$	(1,0)	Vide
	, · · /	Vide Deux droites parallèles

Equation type	Signature de la forme quadratique	Nom de la conique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(1,1)	Hyperbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(1,1)	Deux droites sécantes
$x^2 - y = 0$	(1,0)	Parabole
$x^2 + 1 = 0$	(1,0)	Vide
$x^2 + 1 = 0$ $x^2 - 1 = 0$	(1,0) (1,0)	Vide Deux droites parallèles

6. Forme quadratiques ternaires : les quadriques.

6. Forme quadratiques ternaires : les quadriques.

Une forme quadratiques ternaire est une forme quadratique à trois variables, autrement dit, un polynôme homogène de degré 2 à trois variables. Dans le plan affine \mathbb{R}^3 , elles sont représentées par des surfaces appelées quadriques.

6. Forme quadratiques ternaires : les quadriques.

Une forme quadratiques ternaire est une forme quadratique à trois variables, autrement dit, un polynôme homogène de degré 2 à trois variables. Dans le plan affine \mathbb{R}^3 , elles sont représentées par des surfaces appelées quadriques.

• Dans l'espace vectoriel, une forme binaire est $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy$.

6. Forme quadratiques ternaires : les quadriques.

Une forme quadratiques ternaire est une forme quadratique à trois variables, autrement dit, un polynôme homogène de degré 2 à trois variables. Dans le plan affine \mathbb{R}^3 , elles sont représentées par des surfaces appelées quadriques.

- Dans l'espace vectoriel, une forme binaire est $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy$.
- Dans l'espace affine, l'équation d'une quadrique est

$$\underbrace{Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy}_{\text{partie vectorielle (forme quadratique)}} = \underbrace{Gx + Hy + Iz + J}_{\text{partie affine}}$$

6. Forme quadratiques ternaires : les quadriques.

Une forme quadratiques ternaire est une forme quadratique à trois variables, autrement dit, un polynôme homogène de degré 2 à trois variables. Dans le plan affine \mathbb{R}^3 , elles sont représentées par des surfaces appelées quadriques.

- Dans l'espace vectoriel, une forme binaire est $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy$.
- Dans l'espace affine, l'équation d'une quadrique est

$$\underbrace{Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy}_{\text{partie vectorielle}} = \underbrace{Gx + Hy + Iz + J}_{\text{partie affine}}$$

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$			*

6. Forme quadratiques ternaires : les quadriques.

Une forme quadratiques ternaire est une forme quadratique à trois variables, autrement dit, un polynôme homogène de degré 2 à trois variables. Dans le plan affine \mathbb{R}^3 , elles sont représentées par des surfaces appelées quadriques.

- Dans l'espace vectoriel, une forme binaire est $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy$.
- Dans l'espace affine, l'équation d'une quadrique est

$$\underbrace{Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy}_{\text{partie vectorielle}} = \underbrace{Gx + Hy + Iz + J}_{\text{partie affine}}$$

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	(3,0)		

6. Forme quadratiques ternaires : les quadriques.

Une forme quadratiques ternaire est une forme quadratique à trois variables, autrement dit, un polynôme homogène de degré 2 à trois variables. Dans le plan affine \mathbb{R}^3 , elles sont représentées par des surfaces appelées quadriques.

- Dans l'espace vectoriel, une forme binaire est $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy$.
- Dans l'espace affine, l'équation d'une quadrique est

$$\underbrace{Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fxy}_{\text{partie vectorielle}} = \underbrace{Gx + Hy + Iz + J}_{\text{partie affine}}$$

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	(3,0)	Ellipsoïde	

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$			
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$			
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$			
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre elliptique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$			
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre elliptique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre elliptique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre hyperbolique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre elliptique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre hyperbolique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$	(2,0)		X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre elliptique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(2,0)	cylindre hyperbolique	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$	(2,0)	Paraboloide elliptique	X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$			X
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$			Y
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	(1,1)		X
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$			Y
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	(1,1)	Paraboloide hyperbolique	X
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$			Y
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$			X Y

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	(1,1)	Paraboloide hyperbolique	X
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	(2,1)		×
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	(1,1)	Paraboloide hyperbolique	X
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	(2,1)	Hyperboloide à une nappe	×
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$			X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	(1,1)	Paraboloide hyperbolique	X
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	(2,1)	Hyperboloide à une nappe	Y
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	(2,1)		X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	(1,1)	Paraboloide hyperbolique	X
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	(2,1)	Hyperboloide à une nappe	Y
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	(2,1)	Hyperboloide à deux nappes	X

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$			×
$ax^2 = y$			Y

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	(2,1)		
$ax^2 = y$			×

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	(2,1)	Cône à base elliptique	Y
$ax^2 = y$			×

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	(2,1)	Cône à base elliptique	Y
$ax^2 = y$	(1,0)		×

Equation type	Signature de la forme quadratique	Nom de la quadrique	Représentation graphique
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	(2,1)	Cône à base elliptique	Y
$ax^2 = y$	(1,0)	Cylindre parabolique	* V